ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  drsb2 Unicode version

Theorem drsb2 1829
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.)
Assertion
Ref Expression
drsb2  |-  ( A. x  x  =  y  ->  ( [ x  / 
z ] ph  <->  [ y  /  z ] ph ) )

Proof of Theorem drsb2
StepHypRef Expression
1 sbequ 1828 . 2  |-  ( x  =  y  ->  ( [ x  /  z ] ph  <->  [ y  /  z ] ph ) )
21sps 1525 1  |-  ( A. x  x  =  y  ->  ( [ x  / 
z ] ph  <->  [ y  /  z ] ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341   [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator