Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spsbim | Unicode version |
Description: Specialization of implication. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 21-Jan-2018.) |
Ref | Expression |
---|---|
spsbim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim2 55 | . . . 4 | |
2 | 1 | sps 1525 | . . 3 |
3 | id 19 | . . . . . 6 | |
4 | 3 | anim2d 335 | . . . . 5 |
5 | 4 | alimi 1443 | . . . 4 |
6 | exim 1587 | . . . 4 | |
7 | 5, 6 | syl 14 | . . 3 |
8 | 2, 7 | anim12d 333 | . 2 |
9 | df-sb 1751 | . 2 | |
10 | df-sb 1751 | . 2 | |
11 | 8, 9, 10 | 3imtr4g 204 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1341 wex 1480 wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-sb 1751 |
This theorem is referenced by: spsbbi 1832 hbsb4t 2001 moim 2078 |
Copyright terms: Public domain | W3C validator |