| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spsbim | Unicode version | ||
| Description: Specialization of implication. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 21-Jan-2018.) |
| Ref | Expression |
|---|---|
| spsbim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim2 55 |
. . . 4
| |
| 2 | 1 | sps 1551 |
. . 3
|
| 3 | id 19 |
. . . . . 6
| |
| 4 | 3 | anim2d 337 |
. . . . 5
|
| 5 | 4 | alimi 1469 |
. . . 4
|
| 6 | exim 1613 |
. . . 4
| |
| 7 | 5, 6 | syl 14 |
. . 3
|
| 8 | 2, 7 | anim12d 335 |
. 2
|
| 9 | df-sb 1777 |
. 2
| |
| 10 | df-sb 1777 |
. 2
| |
| 11 | 8, 9, 10 | 3imtr4g 205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 |
| This theorem is referenced by: spsbbi 1858 hbsb4t 2032 moim 2109 |
| Copyright terms: Public domain | W3C validator |