Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spsbim | Unicode version |
Description: Specialization of implication. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 21-Jan-2018.) |
Ref | Expression |
---|---|
spsbim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim2 55 | . . . 4 | |
2 | 1 | sps 1517 | . . 3 |
3 | id 19 | . . . . . 6 | |
4 | 3 | anim2d 335 | . . . . 5 |
5 | 4 | alimi 1435 | . . . 4 |
6 | exim 1579 | . . . 4 | |
7 | 5, 6 | syl 14 | . . 3 |
8 | 2, 7 | anim12d 333 | . 2 |
9 | df-sb 1743 | . 2 | |
10 | df-sb 1743 | . 2 | |
11 | 8, 9, 10 | 3imtr4g 204 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1333 wex 1472 wsb 1742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 ax-ial 1514 |
This theorem depends on definitions: df-bi 116 df-sb 1743 |
This theorem is referenced by: spsbbi 1824 hbsb4t 1993 moim 2070 |
Copyright terms: Public domain | W3C validator |