Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.23bi | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.23bi.1 | ⊢ (∃𝑥𝜑 → 𝜓) |
Ref | Expression |
---|---|
19.23bi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 1583 | . 2 ⊢ (𝜑 → ∃𝑥𝜑) | |
2 | 19.23bi.1 | . 2 ⊢ (∃𝑥𝜑 → 𝜓) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: mo2icl 2909 copsexg 4229 |
Copyright terms: Public domain | W3C validator |