ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mo2icl GIF version

Theorem mo2icl 2953
Description: Theorem for inferring "at most one". (Contributed by NM, 17-Oct-1996.)
Assertion
Ref Expression
mo2icl (∀𝑥(𝜑𝑥 = 𝐴) → ∃*𝑥𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem mo2icl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfa1 1565 . . . . 5 𝑥𝑥(𝜑𝑥 = 𝐴)
2 vex 2776 . . . . . . . 8 𝑥 ∈ V
3 eleq1 2269 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 ∈ V ↔ 𝐴 ∈ V))
42, 3mpbii 148 . . . . . . 7 (𝑥 = 𝐴𝐴 ∈ V)
54imim2i 12 . . . . . 6 ((𝜑𝑥 = 𝐴) → (𝜑𝐴 ∈ V))
65sps 1561 . . . . 5 (∀𝑥(𝜑𝑥 = 𝐴) → (𝜑𝐴 ∈ V))
71, 6eximd 1636 . . . 4 (∀𝑥(𝜑𝑥 = 𝐴) → (∃𝑥𝜑 → ∃𝑥 𝐴 ∈ V))
8 19.9v 1895 . . . 4 (∃𝑥 𝐴 ∈ V ↔ 𝐴 ∈ V)
97, 8imbitrdi 161 . . 3 (∀𝑥(𝜑𝑥 = 𝐴) → (∃𝑥𝜑𝐴 ∈ V))
10 eqeq2 2216 . . . . . . . 8 (𝑦 = 𝐴 → (𝑥 = 𝑦𝑥 = 𝐴))
1110imbi2d 230 . . . . . . 7 (𝑦 = 𝐴 → ((𝜑𝑥 = 𝑦) ↔ (𝜑𝑥 = 𝐴)))
1211albidv 1848 . . . . . 6 (𝑦 = 𝐴 → (∀𝑥(𝜑𝑥 = 𝑦) ↔ ∀𝑥(𝜑𝑥 = 𝐴)))
1312imbi1d 231 . . . . 5 (𝑦 = 𝐴 → ((∀𝑥(𝜑𝑥 = 𝑦) → ∃*𝑥𝜑) ↔ (∀𝑥(𝜑𝑥 = 𝐴) → ∃*𝑥𝜑)))
14 nfv 1552 . . . . . . 7 𝑦𝜑
1514mo2r 2107 . . . . . 6 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃*𝑥𝜑)
161519.23bi 1616 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) → ∃*𝑥𝜑)
1713, 16vtoclg 2834 . . . 4 (𝐴 ∈ V → (∀𝑥(𝜑𝑥 = 𝐴) → ∃*𝑥𝜑))
1817com12 30 . . 3 (∀𝑥(𝜑𝑥 = 𝐴) → (𝐴 ∈ V → ∃*𝑥𝜑))
199, 18syld 45 . 2 (∀𝑥(𝜑𝑥 = 𝐴) → (∃𝑥𝜑 → ∃*𝑥𝜑))
20 moabs 2104 . 2 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑))
2119, 20sylibr 134 1 (∀𝑥(𝜑𝑥 = 𝐴) → ∃*𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371   = wceq 1373  wex 1516  ∃*wmo 2056  wcel 2177  Vcvv 2773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775
This theorem is referenced by:  invdisj  4040  imasaddfnlemg  13190
  Copyright terms: Public domain W3C validator