Step | Hyp | Ref
| Expression |
1 | | nfa1 1529 |
. . . . 5
⊢
Ⅎ𝑥∀𝑥(𝜑 → 𝑥 = 𝐴) |
2 | | vex 2729 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
3 | | eleq1 2229 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑥 ∈ V ↔ 𝐴 ∈ V)) |
4 | 2, 3 | mpbii 147 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) |
5 | 4 | imim2i 12 |
. . . . . 6
⊢ ((𝜑 → 𝑥 = 𝐴) → (𝜑 → 𝐴 ∈ V)) |
6 | 5 | sps 1525 |
. . . . 5
⊢
(∀𝑥(𝜑 → 𝑥 = 𝐴) → (𝜑 → 𝐴 ∈ V)) |
7 | 1, 6 | eximd 1600 |
. . . 4
⊢
(∀𝑥(𝜑 → 𝑥 = 𝐴) → (∃𝑥𝜑 → ∃𝑥 𝐴 ∈ V)) |
8 | | 19.9v 1859 |
. . . 4
⊢
(∃𝑥 𝐴 ∈ V ↔ 𝐴 ∈ V) |
9 | 7, 8 | syl6ib 160 |
. . 3
⊢
(∀𝑥(𝜑 → 𝑥 = 𝐴) → (∃𝑥𝜑 → 𝐴 ∈ V)) |
10 | | eqeq2 2175 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) |
11 | 10 | imbi2d 229 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → ((𝜑 → 𝑥 = 𝑦) ↔ (𝜑 → 𝑥 = 𝐴))) |
12 | 11 | albidv 1812 |
. . . . . 6
⊢ (𝑦 = 𝐴 → (∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥(𝜑 → 𝑥 = 𝐴))) |
13 | 12 | imbi1d 230 |
. . . . 5
⊢ (𝑦 = 𝐴 → ((∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃*𝑥𝜑) ↔ (∀𝑥(𝜑 → 𝑥 = 𝐴) → ∃*𝑥𝜑))) |
14 | | nfv 1516 |
. . . . . . 7
⊢
Ⅎ𝑦𝜑 |
15 | 14 | mo2r 2066 |
. . . . . 6
⊢
(∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃*𝑥𝜑) |
16 | 15 | 19.23bi 1580 |
. . . . 5
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃*𝑥𝜑) |
17 | 13, 16 | vtoclg 2786 |
. . . 4
⊢ (𝐴 ∈ V → (∀𝑥(𝜑 → 𝑥 = 𝐴) → ∃*𝑥𝜑)) |
18 | 17 | com12 30 |
. . 3
⊢
(∀𝑥(𝜑 → 𝑥 = 𝐴) → (𝐴 ∈ V → ∃*𝑥𝜑)) |
19 | 9, 18 | syld 45 |
. 2
⊢
(∀𝑥(𝜑 → 𝑥 = 𝐴) → (∃𝑥𝜑 → ∃*𝑥𝜑)) |
20 | | moabs 2063 |
. 2
⊢
(∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑)) |
21 | 19, 20 | sylibr 133 |
1
⊢
(∀𝑥(𝜑 → 𝑥 = 𝐴) → ∃*𝑥𝜑) |