Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.8a | GIF version |
Description: If a wff is true, then it is true for at least one instance. Special case of Theorem 19.8 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.8a | ⊢ (𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ (∃𝑥𝜑 → ∃𝑥𝜑) | |
2 | hbe1 1493 | . . . 4 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
3 | 2 | 19.23h 1496 | . . 3 ⊢ (∀𝑥(𝜑 → ∃𝑥𝜑) ↔ (∃𝑥𝜑 → ∃𝑥𝜑)) |
4 | 1, 3 | mpbir 146 | . 2 ⊢ ∀𝑥(𝜑 → ∃𝑥𝜑) |
5 | 4 | spi 1534 | 1 ⊢ (𝜑 → ∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1351 ∃wex 1490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-4 1508 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 19.8ad 1589 19.23bi 1590 exim 1597 19.43 1626 hbex 1634 19.2 1636 19.9t 1640 19.9h 1641 excomim 1661 19.38 1674 nexr 1690 sbequ1 1766 equs5e 1793 exdistrfor 1798 sbcof2 1808 mo2n 2052 euor2 2082 2moex 2110 2euex 2111 2moswapdc 2114 2exeu 2116 rspe 2524 rsp2e 2526 ceqex 2862 vn0m 3432 intab 3869 copsexg 4238 eusv2nf 4450 dmcosseq 4891 dminss 5035 imainss 5036 relssdmrn 5141 oprabid 5897 tfrlemibxssdm 6318 tfr1onlembxssdm 6334 tfrcllembxssdm 6347 snexxph 6939 nqprl 7525 nqpru 7526 ltsopr 7570 ltexprlemm 7574 recexprlemopl 7599 recexprlemopu 7601 suplocexprlemrl 7691 |
Copyright terms: Public domain | W3C validator |