Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.8a | GIF version |
Description: If a wff is true, then it is true for at least one instance. Special case of Theorem 19.8 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.8a | ⊢ (𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ (∃𝑥𝜑 → ∃𝑥𝜑) | |
2 | hbe1 1483 | . . . 4 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
3 | 2 | 19.23h 1486 | . . 3 ⊢ (∀𝑥(𝜑 → ∃𝑥𝜑) ↔ (∃𝑥𝜑 → ∃𝑥𝜑)) |
4 | 1, 3 | mpbir 145 | . 2 ⊢ ∀𝑥(𝜑 → ∃𝑥𝜑) |
5 | 4 | spi 1524 | 1 ⊢ (𝜑 → ∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 19.8ad 1579 19.23bi 1580 exim 1587 19.43 1616 hbex 1624 19.2 1626 19.9t 1630 19.9h 1631 excomim 1651 19.38 1664 nexr 1680 sbequ1 1756 equs5e 1783 exdistrfor 1788 sbcof2 1798 mo2n 2042 euor2 2072 2moex 2100 2euex 2101 2moswapdc 2104 2exeu 2106 rspe 2515 rsp2e 2517 ceqex 2853 vn0m 3420 intab 3853 copsexg 4222 eusv2nf 4434 dmcosseq 4875 dminss 5018 imainss 5019 relssdmrn 5124 oprabid 5874 tfrlemibxssdm 6295 tfr1onlembxssdm 6311 tfrcllembxssdm 6324 snexxph 6915 nqprl 7492 nqpru 7493 ltsopr 7537 ltexprlemm 7541 recexprlemopl 7566 recexprlemopu 7568 suplocexprlemrl 7658 |
Copyright terms: Public domain | W3C validator |