![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 19.8a | GIF version |
Description: If a wff is true, then it is true for at least one instance. Special case of Theorem 19.8 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.8a | ⊢ (𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ (∃𝑥𝜑 → ∃𝑥𝜑) | |
2 | hbe1 1506 | . . . 4 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
3 | 2 | 19.23h 1509 | . . 3 ⊢ (∀𝑥(𝜑 → ∃𝑥𝜑) ↔ (∃𝑥𝜑 → ∃𝑥𝜑)) |
4 | 1, 3 | mpbir 146 | . 2 ⊢ ∀𝑥(𝜑 → ∃𝑥𝜑) |
5 | 4 | spi 1547 | 1 ⊢ (𝜑 → ∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1362 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 19.8ad 1602 19.23bi 1603 exim 1610 19.43 1639 hbex 1647 19.2 1649 19.9t 1653 19.9h 1654 excomim 1674 19.38 1687 nexr 1703 sbequ1 1779 equs5e 1806 exdistrfor 1811 sbcof2 1821 mo2n 2070 euor2 2100 2moex 2128 2euex 2129 2moswapdc 2132 2exeu 2134 rspe 2543 rsp2e 2545 ceqex 2888 vn0m 3459 intab 3900 copsexg 4274 eusv2nf 4488 dmcosseq 4934 dminss 5081 imainss 5082 relssdmrn 5187 oprabid 5951 tfrlemibxssdm 6382 tfr1onlembxssdm 6398 tfrcllembxssdm 6411 snexxph 7011 nqprl 7613 nqpru 7614 ltsopr 7658 ltexprlemm 7662 recexprlemopl 7687 recexprlemopu 7689 suplocexprlemrl 7779 divsfval 12914 |
Copyright terms: Public domain | W3C validator |