| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.8a | GIF version | ||
| Description: If a wff is true, then it is true for at least one instance. Special case of Theorem 19.8 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 19.8a | ⊢ (𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ (∃𝑥𝜑 → ∃𝑥𝜑) | |
| 2 | hbe1 1519 | . . . 4 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
| 3 | 2 | 19.23h 1522 | . . 3 ⊢ (∀𝑥(𝜑 → ∃𝑥𝜑) ↔ (∃𝑥𝜑 → ∃𝑥𝜑)) |
| 4 | 1, 3 | mpbir 146 | . 2 ⊢ ∀𝑥(𝜑 → ∃𝑥𝜑) |
| 5 | 4 | spi 1560 | 1 ⊢ (𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 19.8ad 1615 19.23bi 1616 exim 1623 19.43 1652 hbex 1660 19.2 1662 19.9t 1666 19.9h 1667 excomim 1687 19.38 1700 nexr 1716 sbequ1 1792 equs5e 1819 exdistrfor 1824 sbcof2 1834 mo2n 2083 euor2 2113 2moex 2141 2euex 2142 2moswapdc 2145 2exeu 2147 rspe 2556 rsp2e 2558 ceqex 2904 vn0m 3476 intab 3919 copsexg 4295 eusv2nf 4510 dmcosseq 4958 dminss 5105 imainss 5106 relssdmrn 5211 oprabid 5988 tfrlemibxssdm 6425 tfr1onlembxssdm 6441 tfrcllembxssdm 6454 snexxph 7066 nqprl 7679 nqpru 7680 ltsopr 7724 ltexprlemm 7728 recexprlemopl 7753 recexprlemopu 7755 suplocexprlemrl 7845 divsfval 13230 |
| Copyright terms: Public domain | W3C validator |