| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.8a | GIF version | ||
| Description: If a wff is true, then it is true for at least one instance. Special case of Theorem 19.8 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 19.8a | ⊢ (𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ (∃𝑥𝜑 → ∃𝑥𝜑) | |
| 2 | hbe1 1541 | . . . 4 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
| 3 | 2 | 19.23h 1544 | . . 3 ⊢ (∀𝑥(𝜑 → ∃𝑥𝜑) ↔ (∃𝑥𝜑 → ∃𝑥𝜑)) |
| 4 | 1, 3 | mpbir 146 | . 2 ⊢ ∀𝑥(𝜑 → ∃𝑥𝜑) |
| 5 | 4 | spi 1582 | 1 ⊢ (𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1393 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 19.8ad 1637 19.23bi 1638 exim 1645 19.43 1674 hbex 1682 19.2 1684 19.9t 1688 19.9h 1689 excomim 1709 19.38 1722 nexr 1738 sbequ1 1814 equs5e 1841 exdistrfor 1846 sbcof2 1856 mo2n 2105 euor2 2136 2moex 2164 2euex 2165 2moswapdc 2168 2exeu 2170 rspe 2579 rsp2e 2581 ceqex 2930 vn0m 3503 intab 3951 copsexg 4329 eusv2nf 4546 dmcosseq 4995 dminss 5142 imainss 5143 relssdmrn 5248 oprabid 6032 tfrlemibxssdm 6471 tfr1onlembxssdm 6487 tfrcllembxssdm 6500 snexxph 7113 nqprl 7734 nqpru 7735 ltsopr 7779 ltexprlemm 7783 recexprlemopl 7808 recexprlemopu 7810 suplocexprlemrl 7900 divsfval 13356 |
| Copyright terms: Public domain | W3C validator |