Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.8a | GIF version |
Description: If a wff is true, then it is true for at least one instance. Special case of Theorem 19.8 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.8a | ⊢ (𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ (∃𝑥𝜑 → ∃𝑥𝜑) | |
2 | hbe1 1488 | . . . 4 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | |
3 | 2 | 19.23h 1491 | . . 3 ⊢ (∀𝑥(𝜑 → ∃𝑥𝜑) ↔ (∃𝑥𝜑 → ∃𝑥𝜑)) |
4 | 1, 3 | mpbir 145 | . 2 ⊢ ∀𝑥(𝜑 → ∃𝑥𝜑) |
5 | 4 | spi 1529 | 1 ⊢ (𝜑 → ∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 19.8ad 1584 19.23bi 1585 exim 1592 19.43 1621 hbex 1629 19.2 1631 19.9t 1635 19.9h 1636 excomim 1656 19.38 1669 nexr 1685 sbequ1 1761 equs5e 1788 exdistrfor 1793 sbcof2 1803 mo2n 2047 euor2 2077 2moex 2105 2euex 2106 2moswapdc 2109 2exeu 2111 rspe 2519 rsp2e 2521 ceqex 2857 vn0m 3426 intab 3860 copsexg 4229 eusv2nf 4441 dmcosseq 4882 dminss 5025 imainss 5026 relssdmrn 5131 oprabid 5885 tfrlemibxssdm 6306 tfr1onlembxssdm 6322 tfrcllembxssdm 6335 snexxph 6927 nqprl 7513 nqpru 7514 ltsopr 7558 ltexprlemm 7562 recexprlemopl 7587 recexprlemopu 7589 suplocexprlemrl 7679 |
Copyright terms: Public domain | W3C validator |