ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exlimih GIF version

Theorem exlimih 1639
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Hypotheses
Ref Expression
exlimih.1 (𝜓 → ∀𝑥𝜓)
exlimih.2 (𝜑𝜓)
Assertion
Ref Expression
exlimih (∃𝑥𝜑𝜓)

Proof of Theorem exlimih
StepHypRef Expression
1 exlimih.1 . . 3 (𝜓 → ∀𝑥𝜓)
2119.23h 1544 . 2 (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
3 exlimih.2 . 2 (𝜑𝜓)
42, 3mpgbi 1498 1 (∃𝑥𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1393  wex 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-gen 1495  ax-ie2 1540
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  exlimi  1640  exlimiv  1644  19.43  1674  hbex  1682  ax6blem  1696  19.41h  1731  ax9o  1744  equid  1747  equsex  1774  cbvexh  1801  equs5a  1840  sb5rf  1898  equvin  1909  euan  2134  moexexdc  2162
  Copyright terms: Public domain W3C validator