Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exlimih | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
Ref | Expression |
---|---|
exlimih.1 | ⊢ (𝜓 → ∀𝑥𝜓) |
exlimih.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
exlimih | ⊢ (∃𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimih.1 | . . 3 ⊢ (𝜓 → ∀𝑥𝜓) | |
2 | 1 | 19.23h 1491 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
3 | exlimih.2 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | mpgbi 1445 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-gen 1442 ax-ie2 1487 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: exlimi 1587 exlimiv 1591 19.43 1621 hbex 1629 ax6blem 1643 19.41h 1678 ax9o 1691 equid 1694 equsex 1721 cbvexh 1748 equs5a 1787 sb5rf 1845 equvin 1856 euan 2075 moexexdc 2103 |
Copyright terms: Public domain | W3C validator |