| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimih | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
| Ref | Expression |
|---|---|
| exlimih.1 | ⊢ (𝜓 → ∀𝑥𝜓) |
| exlimih.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| exlimih | ⊢ (∃𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimih.1 | . . 3 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 2 | 1 | 19.23h 1520 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| 3 | exlimih.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | 2, 3 | mpgbi 1474 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1370 ∃wex 1514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1471 ax-ie2 1516 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exlimi 1616 exlimiv 1620 19.43 1650 hbex 1658 ax6blem 1672 19.41h 1707 ax9o 1720 equid 1723 equsex 1750 cbvexh 1777 equs5a 1816 sb5rf 1874 equvin 1885 euan 2109 moexexdc 2137 |
| Copyright terms: Public domain | W3C validator |