ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exlimih GIF version

Theorem exlimih 1603
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Hypotheses
Ref Expression
exlimih.1 (𝜓 → ∀𝑥𝜓)
exlimih.2 (𝜑𝜓)
Assertion
Ref Expression
exlimih (∃𝑥𝜑𝜓)

Proof of Theorem exlimih
StepHypRef Expression
1 exlimih.1 . . 3 (𝜓 → ∀𝑥𝜓)
2119.23h 1508 . 2 (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
3 exlimih.2 . 2 (𝜑𝜓)
42, 3mpgbi 1462 1 (∃𝑥𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1361  wex 1502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-gen 1459  ax-ie2 1504
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  exlimi  1604  exlimiv  1608  19.43  1638  hbex  1646  ax6blem  1660  19.41h  1695  ax9o  1708  equid  1711  equsex  1738  cbvexh  1765  equs5a  1804  sb5rf  1862  equvin  1873  euan  2092  moexexdc  2120
  Copyright terms: Public domain W3C validator