ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exlimih GIF version

Theorem exlimih 1604
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Hypotheses
Ref Expression
exlimih.1 (𝜓 → ∀𝑥𝜓)
exlimih.2 (𝜑𝜓)
Assertion
Ref Expression
exlimih (∃𝑥𝜑𝜓)

Proof of Theorem exlimih
StepHypRef Expression
1 exlimih.1 . . 3 (𝜓 → ∀𝑥𝜓)
2119.23h 1509 . 2 (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
3 exlimih.2 . 2 (𝜑𝜓)
42, 3mpgbi 1463 1 (∃𝑥𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362  wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-gen 1460  ax-ie2 1505
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  exlimi  1605  exlimiv  1609  19.43  1639  hbex  1647  ax6blem  1661  19.41h  1696  ax9o  1709  equid  1712  equsex  1739  cbvexh  1766  equs5a  1805  sb5rf  1863  equvin  1874  euan  2098  moexexdc  2126
  Copyright terms: Public domain W3C validator