ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exlimih GIF version

Theorem exlimih 1617
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Hypotheses
Ref Expression
exlimih.1 (𝜓 → ∀𝑥𝜓)
exlimih.2 (𝜑𝜓)
Assertion
Ref Expression
exlimih (∃𝑥𝜑𝜓)

Proof of Theorem exlimih
StepHypRef Expression
1 exlimih.1 . . 3 (𝜓 → ∀𝑥𝜓)
2119.23h 1522 . 2 (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
3 exlimih.2 . 2 (𝜑𝜓)
42, 3mpgbi 1476 1 (∃𝑥𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  wex 1516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-gen 1473  ax-ie2 1518
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  exlimi  1618  exlimiv  1622  19.43  1652  hbex  1660  ax6blem  1674  19.41h  1709  ax9o  1722  equid  1725  equsex  1752  cbvexh  1779  equs5a  1818  sb5rf  1876  equvin  1887  euan  2111  moexexdc  2139
  Copyright terms: Public domain W3C validator