ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exlimih GIF version

Theorem exlimih 1615
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Hypotheses
Ref Expression
exlimih.1 (𝜓 → ∀𝑥𝜓)
exlimih.2 (𝜑𝜓)
Assertion
Ref Expression
exlimih (∃𝑥𝜑𝜓)

Proof of Theorem exlimih
StepHypRef Expression
1 exlimih.1 . . 3 (𝜓 → ∀𝑥𝜓)
2119.23h 1520 . 2 (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
3 exlimih.2 . 2 (𝜑𝜓)
42, 3mpgbi 1474 1 (∃𝑥𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1370  wex 1514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-gen 1471  ax-ie2 1516
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  exlimi  1616  exlimiv  1620  19.43  1650  hbex  1658  ax6blem  1672  19.41h  1707  ax9o  1720  equid  1723  equsex  1750  cbvexh  1777  equs5a  1816  sb5rf  1874  equvin  1885  euan  2109  moexexdc  2137
  Copyright terms: Public domain W3C validator