| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > exlimih | GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) | 
| Ref | Expression | 
|---|---|
| exlimih.1 | ⊢ (𝜓 → ∀𝑥𝜓) | 
| exlimih.2 | ⊢ (𝜑 → 𝜓) | 
| Ref | Expression | 
|---|---|
| exlimih | ⊢ (∃𝑥𝜑 → 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exlimih.1 | . . 3 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 2 | 1 | 19.23h 1512 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) | 
| 3 | exlimih.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | 2, 3 | mpgbi 1466 | 1 ⊢ (∃𝑥𝜑 → 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∀wal 1362 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-gen 1463 ax-ie2 1508 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: exlimi 1608 exlimiv 1612 19.43 1642 hbex 1650 ax6blem 1664 19.41h 1699 ax9o 1712 equid 1715 equsex 1742 cbvexh 1769 equs5a 1808 sb5rf 1866 equvin 1877 euan 2101 moexexdc 2129 | 
| Copyright terms: Public domain | W3C validator |