ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  copsexg GIF version

Theorem copsexg 4265
Description: Substitution of class 𝐴 for ordered pair 𝑥, 𝑦. (Contributed by NM, 27-Dec-1996.) (Revised by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
copsexg (𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem copsexg
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2755 . . . 4 𝑥 ∈ V
2 vex 2755 . . . 4 𝑦 ∈ V
31, 2eqvinop 4264 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑧𝑤(𝐴 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩))
4 19.8a 1601 . . . . . . . . 9 (∃𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
5419.23bi 1603 . . . . . . . 8 ((⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
65ex 115 . . . . . . 7 (⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ → (𝜑 → ∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
7 vex 2755 . . . . . . . . 9 𝑧 ∈ V
8 vex 2755 . . . . . . . . 9 𝑤 ∈ V
97, 8opth 4258 . . . . . . . 8 (⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ↔ (𝑧 = 𝑥𝑤 = 𝑦))
109anbi1i 458 . . . . . . . . . 10 ((⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑))
11102exbii 1617 . . . . . . . . 9 (∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑))
12 nfe1 1507 . . . . . . . . . . 11 𝑥𝑥(𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑))
13 dveeq2or 1827 . . . . . . . . . . . 12 (∀𝑦 𝑦 = 𝑥 ∨ Ⅎ𝑦 𝑧 = 𝑥)
14 nfae 1730 . . . . . . . . . . . . . . 15 𝑦𝑦 𝑦 = 𝑥
15 anass 401 . . . . . . . . . . . . . . . 16 (((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑) ↔ (𝑧 = 𝑥 ∧ (𝑤 = 𝑦𝜑)))
16 19.8a 1601 . . . . . . . . . . . . . . . . . 18 ((𝑤 = 𝑦𝜑) → ∃𝑦(𝑤 = 𝑦𝜑))
1716a1i 9 . . . . . . . . . . . . . . . . 17 (∀𝑦 𝑦 = 𝑥 → ((𝑤 = 𝑦𝜑) → ∃𝑦(𝑤 = 𝑦𝜑)))
1817anim2d 337 . . . . . . . . . . . . . . . 16 (∀𝑦 𝑦 = 𝑥 → ((𝑧 = 𝑥 ∧ (𝑤 = 𝑦𝜑)) → (𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑))))
1915, 18biimtrid 152 . . . . . . . . . . . . . . 15 (∀𝑦 𝑦 = 𝑥 → (((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑) → (𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑))))
2014, 19eximd 1623 . . . . . . . . . . . . . 14 (∀𝑦 𝑦 = 𝑥 → (∃𝑦((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑) → ∃𝑦(𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑))))
21 biidd 172 . . . . . . . . . . . . . . 15 (∀𝑦 𝑦 = 𝑥 → ((𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑)) ↔ (𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑))))
2221drex1 1809 . . . . . . . . . . . . . 14 (∀𝑦 𝑦 = 𝑥 → (∃𝑦(𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑)) ↔ ∃𝑥(𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑))))
2320, 22sylibd 149 . . . . . . . . . . . . 13 (∀𝑦 𝑦 = 𝑥 → (∃𝑦((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑) → ∃𝑥(𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑))))
2415exbii 1616 . . . . . . . . . . . . . . 15 (∃𝑦((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑) ↔ ∃𝑦(𝑧 = 𝑥 ∧ (𝑤 = 𝑦𝜑)))
25 19.40 1642 . . . . . . . . . . . . . . . 16 (∃𝑦(𝑧 = 𝑥 ∧ (𝑤 = 𝑦𝜑)) → (∃𝑦 𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑)))
26 19.9t 1653 . . . . . . . . . . . . . . . . . 18 (Ⅎ𝑦 𝑧 = 𝑥 → (∃𝑦 𝑧 = 𝑥𝑧 = 𝑥))
2726biimpd 144 . . . . . . . . . . . . . . . . 17 (Ⅎ𝑦 𝑧 = 𝑥 → (∃𝑦 𝑧 = 𝑥𝑧 = 𝑥))
2827anim1d 336 . . . . . . . . . . . . . . . 16 (Ⅎ𝑦 𝑧 = 𝑥 → ((∃𝑦 𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑)) → (𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑))))
2925, 28syl5 32 . . . . . . . . . . . . . . 15 (Ⅎ𝑦 𝑧 = 𝑥 → (∃𝑦(𝑧 = 𝑥 ∧ (𝑤 = 𝑦𝜑)) → (𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑))))
3024, 29biimtrid 152 . . . . . . . . . . . . . 14 (Ⅎ𝑦 𝑧 = 𝑥 → (∃𝑦((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑) → (𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑))))
31 19.8a 1601 . . . . . . . . . . . . . 14 ((𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑)) → ∃𝑥(𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑)))
3230, 31syl6 33 . . . . . . . . . . . . 13 (Ⅎ𝑦 𝑧 = 𝑥 → (∃𝑦((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑) → ∃𝑥(𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑))))
3323, 32jaoi 717 . . . . . . . . . . . 12 ((∀𝑦 𝑦 = 𝑥 ∨ Ⅎ𝑦 𝑧 = 𝑥) → (∃𝑦((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑) → ∃𝑥(𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑))))
3413, 33ax-mp 5 . . . . . . . . . . 11 (∃𝑦((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑) → ∃𝑥(𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑)))
3512, 34exlimi 1605 . . . . . . . . . 10 (∃𝑥𝑦((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑) → ∃𝑥(𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑)))
36 euequ1 2133 . . . . . . . . . . . . . 14 ∃!𝑥 𝑥 = 𝑧
37 equcom 1717 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧𝑧 = 𝑥)
3837eubii 2047 . . . . . . . . . . . . . 14 (∃!𝑥 𝑥 = 𝑧 ↔ ∃!𝑥 𝑧 = 𝑥)
3936, 38mpbi 145 . . . . . . . . . . . . 13 ∃!𝑥 𝑧 = 𝑥
40 eupick 2117 . . . . . . . . . . . . 13 ((∃!𝑥 𝑧 = 𝑥 ∧ ∃𝑥(𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑))) → (𝑧 = 𝑥 → ∃𝑦(𝑤 = 𝑦𝜑)))
4139, 40mpan 424 . . . . . . . . . . . 12 (∃𝑥(𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑)) → (𝑧 = 𝑥 → ∃𝑦(𝑤 = 𝑦𝜑)))
4241com12 30 . . . . . . . . . . 11 (𝑧 = 𝑥 → (∃𝑥(𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑)) → ∃𝑦(𝑤 = 𝑦𝜑)))
43 euequ1 2133 . . . . . . . . . . . . . 14 ∃!𝑦 𝑦 = 𝑤
44 equcom 1717 . . . . . . . . . . . . . . 15 (𝑦 = 𝑤𝑤 = 𝑦)
4544eubii 2047 . . . . . . . . . . . . . 14 (∃!𝑦 𝑦 = 𝑤 ↔ ∃!𝑦 𝑤 = 𝑦)
4643, 45mpbi 145 . . . . . . . . . . . . 13 ∃!𝑦 𝑤 = 𝑦
47 eupick 2117 . . . . . . . . . . . . 13 ((∃!𝑦 𝑤 = 𝑦 ∧ ∃𝑦(𝑤 = 𝑦𝜑)) → (𝑤 = 𝑦𝜑))
4846, 47mpan 424 . . . . . . . . . . . 12 (∃𝑦(𝑤 = 𝑦𝜑) → (𝑤 = 𝑦𝜑))
4948com12 30 . . . . . . . . . . 11 (𝑤 = 𝑦 → (∃𝑦(𝑤 = 𝑦𝜑) → 𝜑))
5042, 49sylan9 409 . . . . . . . . . 10 ((𝑧 = 𝑥𝑤 = 𝑦) → (∃𝑥(𝑧 = 𝑥 ∧ ∃𝑦(𝑤 = 𝑦𝜑)) → 𝜑))
5135, 50syl5 32 . . . . . . . . 9 ((𝑧 = 𝑥𝑤 = 𝑦) → (∃𝑥𝑦((𝑧 = 𝑥𝑤 = 𝑦) ∧ 𝜑) → 𝜑))
5211, 51biimtrid 152 . . . . . . . 8 ((𝑧 = 𝑥𝑤 = 𝑦) → (∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝜑))
539, 52sylbi 121 . . . . . . 7 (⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ → (∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝜑))
546, 53impbid 129 . . . . . 6 (⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
55 eqeq1 2196 . . . . . . 7 (𝐴 = ⟨𝑧, 𝑤⟩ → (𝐴 = ⟨𝑥, 𝑦⟩ ↔ ⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩))
5655anbi1d 465 . . . . . . . . 9 (𝐴 = ⟨𝑧, 𝑤⟩ → ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
57562exbidv 1879 . . . . . . . 8 (𝐴 = ⟨𝑧, 𝑤⟩ → (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
5857bibi2d 232 . . . . . . 7 (𝐴 = ⟨𝑧, 𝑤⟩ → ((𝜑 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) ↔ (𝜑 ↔ ∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))))
5955, 58imbi12d 234 . . . . . 6 (𝐴 = ⟨𝑧, 𝑤⟩ → ((𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))) ↔ (⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥𝑦(⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))))
6054, 59mpbiri 168 . . . . 5 (𝐴 = ⟨𝑧, 𝑤⟩ → (𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))))
6160adantr 276 . . . 4 ((𝐴 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩) → (𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))))
6261exlimivv 1908 . . 3 (∃𝑧𝑤(𝐴 = ⟨𝑧, 𝑤⟩ ∧ ⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑦⟩) → (𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))))
633, 62sylbi 121 . 2 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))))
6463pm2.43i 49 1 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  wal 1362   = wceq 1364  wnf 1471  wex 1503  ∃!weu 2038  cop 3613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619
This theorem is referenced by:  copsex2t  4266  copsex2g  4267  opabid  4278  mosubopt  4712
  Copyright terms: Public domain W3C validator