Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.26-2 | GIF version |
Description: Theorem 19.26 of [Margaris] p. 90 with two quantifiers. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
19.26-2 | ⊢ (∀𝑥∀𝑦(𝜑 ∧ 𝜓) ↔ (∀𝑥∀𝑦𝜑 ∧ ∀𝑥∀𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.26 1461 | . . 3 ⊢ (∀𝑦(𝜑 ∧ 𝜓) ↔ (∀𝑦𝜑 ∧ ∀𝑦𝜓)) | |
2 | 1 | albii 1450 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 ∧ 𝜓) ↔ ∀𝑥(∀𝑦𝜑 ∧ ∀𝑦𝜓)) |
3 | 19.26 1461 | . 2 ⊢ (∀𝑥(∀𝑦𝜑 ∧ ∀𝑦𝜓) ↔ (∀𝑥∀𝑦𝜑 ∧ ∀𝑥∀𝑦𝜓)) | |
4 | 2, 3 | bitri 183 | 1 ⊢ (∀𝑥∀𝑦(𝜑 ∧ 𝜓) ↔ (∀𝑥∀𝑦𝜑 ∧ ∀𝑥∀𝑦𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∀wal 1333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: opelopabt 4221 fun11 5234 |
Copyright terms: Public domain | W3C validator |