| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.31r | GIF version | ||
| Description: One direction of Theorem 19.31 of [Margaris] p. 90. The converse holds in classical logic, but not intuitionistic logic. (Contributed by Jim Kingdon, 28-Jul-2018.) |
| Ref | Expression |
|---|---|
| 19.31r.1 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| 19.31r | ⊢ ((∀𝑥𝜑 ∨ 𝜓) → ∀𝑥(𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.31r.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | 1 | 19.32r 1694 | . 2 ⊢ ((𝜓 ∨ ∀𝑥𝜑) → ∀𝑥(𝜓 ∨ 𝜑)) |
| 3 | orcom 729 | . 2 ⊢ ((∀𝑥𝜑 ∨ 𝜓) ↔ (𝜓 ∨ ∀𝑥𝜑)) | |
| 4 | orcom 729 | . . 3 ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) | |
| 5 | 4 | albii 1484 | . 2 ⊢ (∀𝑥(𝜑 ∨ 𝜓) ↔ ∀𝑥(𝜓 ∨ 𝜑)) |
| 6 | 2, 3, 5 | 3imtr4i 201 | 1 ⊢ ((∀𝑥𝜑 ∨ 𝜓) → ∀𝑥(𝜑 ∨ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 709 ∀wal 1362 Ⅎwnf 1474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-gen 1463 ax-4 1524 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |