ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.32r GIF version

Theorem 19.32r 1673
Description: One direction of Theorem 19.32 of [Margaris] p. 90. The converse holds if 𝜑 is decidable, as seen at 19.32dc 1672. (Contributed by Jim Kingdon, 28-Jul-2018.)
Hypothesis
Ref Expression
19.32r.1 𝑥𝜑
Assertion
Ref Expression
19.32r ((𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))

Proof of Theorem 19.32r
StepHypRef Expression
1 19.32r.1 . . 3 𝑥𝜑
2 orc 707 . . 3 (𝜑 → (𝜑𝜓))
31, 2alrimi 1515 . 2 (𝜑 → ∀𝑥(𝜑𝜓))
4 olc 706 . . 3 (𝜓 → (𝜑𝜓))
54alimi 1448 . 2 (∀𝑥𝜓 → ∀𝑥(𝜑𝜓))
63, 5jaoi 711 1 ((𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 703  wal 1346  wnf 1453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-gen 1442  ax-4 1503
This theorem depends on definitions:  df-bi 116  df-nf 1454
This theorem is referenced by:  19.31r  1674
  Copyright terms: Public domain W3C validator