Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.32r | GIF version |
Description: One direction of Theorem 19.32 of [Margaris] p. 90. The converse holds if 𝜑 is decidable, as seen at 19.32dc 1667. (Contributed by Jim Kingdon, 28-Jul-2018.) |
Ref | Expression |
---|---|
19.32r.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
19.32r | ⊢ ((𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.32r.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | orc 702 | . . 3 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
3 | 1, 2 | alrimi 1510 | . 2 ⊢ (𝜑 → ∀𝑥(𝜑 ∨ 𝜓)) |
4 | olc 701 | . . 3 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
5 | 4 | alimi 1443 | . 2 ⊢ (∀𝑥𝜓 → ∀𝑥(𝜑 ∨ 𝜓)) |
6 | 3, 5 | jaoi 706 | 1 ⊢ ((𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑 ∨ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 698 ∀wal 1341 Ⅎwnf 1448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-gen 1437 ax-4 1498 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: 19.31r 1669 |
Copyright terms: Public domain | W3C validator |