| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.35i | GIF version | ||
| Description: Inference from Theorem 19.35 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.) |
| Ref | Expression |
|---|---|
| 19.35i.1 | ⊢ ∃𝑥(𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 19.35i | ⊢ (∀𝑥𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.35i.1 | . 2 ⊢ ∃𝑥(𝜑 → 𝜓) | |
| 2 | 19.35-1 1648 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 19.36i 1696 spimed 1764 |
| Copyright terms: Public domain | W3C validator |