ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.35i GIF version

Theorem 19.35i 1605
Description: Inference from Theorem 19.35 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
Hypothesis
Ref Expression
19.35i.1 𝑥(𝜑𝜓)
Assertion
Ref Expression
19.35i (∀𝑥𝜑 → ∃𝑥𝜓)

Proof of Theorem 19.35i
StepHypRef Expression
1 19.35i.1 . 2 𝑥(𝜑𝜓)
2 19.35-1 1604 . 2 (∃𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))
31, 2ax-mp 5 1 (∀𝑥𝜑 → ∃𝑥𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1333  wex 1472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-4 1490  ax-ial 1514
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  19.36i  1652  spimed  1720
  Copyright terms: Public domain W3C validator