ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.35-1 GIF version

Theorem 19.35-1 1646
Description: Forward direction of Theorem 19.35 of [Margaris] p. 90. The converse holds for classical logic but not (for all propositions) in intuitionistic logic. (Contributed by Mario Carneiro, 2-Feb-2015.)
Assertion
Ref Expression
19.35-1 (∃𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))

Proof of Theorem 19.35-1
StepHypRef Expression
1 19.29 1642 . . 3 ((∀𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → ∃𝑥(𝜑 ∧ (𝜑𝜓)))
2 pm3.35 347 . . . 4 ((𝜑 ∧ (𝜑𝜓)) → 𝜓)
32eximi 1622 . . 3 (∃𝑥(𝜑 ∧ (𝜑𝜓)) → ∃𝑥𝜓)
41, 3syl 14 . 2 ((∀𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → ∃𝑥𝜓)
54expcom 116 1 (∃𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1370  wex 1514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-ial 1556
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  19.35i  1647  19.25  1648  19.36-1  1695  19.37-1  1696  spimt  1758  sbequi  1861
  Copyright terms: Public domain W3C validator