ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.35-1 GIF version

Theorem 19.35-1 1617
Description: Forward direction of Theorem 19.35 of [Margaris] p. 90. The converse holds for classical logic but not (for all propositions) in intuitionistic logic. (Contributed by Mario Carneiro, 2-Feb-2015.)
Assertion
Ref Expression
19.35-1 (∃𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))

Proof of Theorem 19.35-1
StepHypRef Expression
1 19.29 1613 . . 3 ((∀𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → ∃𝑥(𝜑 ∧ (𝜑𝜓)))
2 pm3.35 345 . . . 4 ((𝜑 ∧ (𝜑𝜓)) → 𝜓)
32eximi 1593 . . 3 (∃𝑥(𝜑 ∧ (𝜑𝜓)) → ∃𝑥𝜓)
41, 3syl 14 . 2 ((∀𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → ∃𝑥𝜓)
54expcom 115 1 (∃𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1346  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-ial 1527
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  19.35i  1618  19.25  1619  19.36-1  1666  19.37-1  1667  spimt  1729  sbequi  1832
  Copyright terms: Public domain W3C validator