| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.35-1 | GIF version | ||
| Description: Forward direction of Theorem 19.35 of [Margaris] p. 90. The converse holds for classical logic but not (for all propositions) in intuitionistic logic. (Contributed by Mario Carneiro, 2-Feb-2015.) |
| Ref | Expression |
|---|---|
| 19.35-1 | ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.29 1634 | . . 3 ⊢ ((∀𝑥𝜑 ∧ ∃𝑥(𝜑 → 𝜓)) → ∃𝑥(𝜑 ∧ (𝜑 → 𝜓))) | |
| 2 | pm3.35 347 | . . . 4 ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) | |
| 3 | 2 | eximi 1614 | . . 3 ⊢ (∃𝑥(𝜑 ∧ (𝜑 → 𝜓)) → ∃𝑥𝜓) |
| 4 | 1, 3 | syl 14 | . 2 ⊢ ((∀𝑥𝜑 ∧ ∃𝑥(𝜑 → 𝜓)) → ∃𝑥𝜓) |
| 5 | 4 | expcom 116 | 1 ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 19.35i 1639 19.25 1640 19.36-1 1687 19.37-1 1688 spimt 1750 sbequi 1853 |
| Copyright terms: Public domain | W3C validator |