![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 19.35-1 | GIF version |
Description: Forward direction of Theorem 19.35 of [Margaris] p. 90. The converse holds for classical logic but not (for all propositions) in intuitionistic logic. (Contributed by Mario Carneiro, 2-Feb-2015.) |
Ref | Expression |
---|---|
19.35-1 | ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.29 1620 | . . 3 ⊢ ((∀𝑥𝜑 ∧ ∃𝑥(𝜑 → 𝜓)) → ∃𝑥(𝜑 ∧ (𝜑 → 𝜓))) | |
2 | pm3.35 347 | . . . 4 ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) | |
3 | 2 | eximi 1600 | . . 3 ⊢ (∃𝑥(𝜑 ∧ (𝜑 → 𝜓)) → ∃𝑥𝜓) |
4 | 1, 3 | syl 14 | . 2 ⊢ ((∀𝑥𝜑 ∧ ∃𝑥(𝜑 → 𝜓)) → ∃𝑥𝜓) |
5 | 4 | expcom 116 | 1 ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1351 ∃wex 1492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 19.35i 1625 19.25 1626 19.36-1 1673 19.37-1 1674 spimt 1736 sbequi 1839 |
Copyright terms: Public domain | W3C validator |