Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.35-1 | GIF version |
Description: Forward direction of Theorem 19.35 of [Margaris] p. 90. The converse holds for classical logic but not (for all propositions) in intuitionistic logic. (Contributed by Mario Carneiro, 2-Feb-2015.) |
Ref | Expression |
---|---|
19.35-1 | ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.29 1613 | . . 3 ⊢ ((∀𝑥𝜑 ∧ ∃𝑥(𝜑 → 𝜓)) → ∃𝑥(𝜑 ∧ (𝜑 → 𝜓))) | |
2 | pm3.35 345 | . . . 4 ⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) | |
3 | 2 | eximi 1593 | . . 3 ⊢ (∃𝑥(𝜑 ∧ (𝜑 → 𝜓)) → ∃𝑥𝜓) |
4 | 1, 3 | syl 14 | . 2 ⊢ ((∀𝑥𝜑 ∧ ∃𝑥(𝜑 → 𝜓)) → ∃𝑥𝜓) |
5 | 4 | expcom 115 | 1 ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1346 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 19.35i 1618 19.25 1619 19.36-1 1666 19.37-1 1667 spimt 1729 sbequi 1832 |
Copyright terms: Public domain | W3C validator |