Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.25 | GIF version |
Description: Theorem 19.25 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.) |
Ref | Expression |
---|---|
19.25 | ⊢ (∀𝑦∃𝑥(𝜑 → 𝜓) → (∃𝑦∀𝑥𝜑 → ∃𝑦∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.35-1 1617 | . . 3 ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓)) | |
2 | 1 | alimi 1448 | . 2 ⊢ (∀𝑦∃𝑥(𝜑 → 𝜓) → ∀𝑦(∀𝑥𝜑 → ∃𝑥𝜓)) |
3 | exim 1592 | . 2 ⊢ (∀𝑦(∀𝑥𝜑 → ∃𝑥𝜓) → (∃𝑦∀𝑥𝜑 → ∃𝑦∃𝑥𝜓)) | |
4 | 2, 3 | syl 14 | 1 ⊢ (∀𝑦∃𝑥(𝜑 → 𝜓) → (∃𝑦∀𝑥𝜑 → ∃𝑦∃𝑥𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |