ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.25 GIF version

Theorem 19.25 1614
Description: Theorem 19.25 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
Assertion
Ref Expression
19.25 (∀𝑦𝑥(𝜑𝜓) → (∃𝑦𝑥𝜑 → ∃𝑦𝑥𝜓))

Proof of Theorem 19.25
StepHypRef Expression
1 19.35-1 1612 . . 3 (∃𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))
21alimi 1443 . 2 (∀𝑦𝑥(𝜑𝜓) → ∀𝑦(∀𝑥𝜑 → ∃𝑥𝜓))
3 exim 1587 . 2 (∀𝑦(∀𝑥𝜑 → ∃𝑥𝜓) → (∃𝑦𝑥𝜑 → ∃𝑦𝑥𝜓))
42, 3syl 14 1 (∀𝑦𝑥(𝜑𝜓) → (∃𝑦𝑥𝜑 → ∃𝑦𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341  wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator