Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.36i | GIF version |
Description: Inference from Theorem 19.36 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.) |
Ref | Expression |
---|---|
19.36i.1 | ⊢ Ⅎ𝑥𝜓 |
19.36i.2 | ⊢ ∃𝑥(𝜑 → 𝜓) |
Ref | Expression |
---|---|
19.36i | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.36i.2 | . . 3 ⊢ ∃𝑥(𝜑 → 𝜓) | |
2 | 1 | 19.35i 1613 | . 2 ⊢ (∀𝑥𝜑 → ∃𝑥𝜓) |
3 | 19.36i.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
4 | id 19 | . . 3 ⊢ (𝜓 → 𝜓) | |
5 | 3, 4 | exlimi 1582 | . 2 ⊢ (∃𝑥𝜓 → 𝜓) |
6 | 2, 5 | syl 14 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 Ⅎwnf 1448 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: spimfv 1687 19.36aiv 1889 vtoclf 2779 |
Copyright terms: Public domain | W3C validator |