| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3ad2antr3 | GIF version | ||
| Description: Deduction adding a conjuncts to antecedent. (Contributed by NM, 30-Dec-2007.) | 
| Ref | Expression | 
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | 
| Ref | Expression | 
|---|---|
| 3ad2antr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantrl 478 | . 2 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜒)) → 𝜃) | 
| 3 | 2 | 3adantr1 1158 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜏 ∧ 𝜒)) → 𝜃) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: ordwe 4612 grprcan 13169 grpsubrcan 13213 grpaddsubass 13222 mhmmnd 13246 | 
| Copyright terms: Public domain | W3C validator |