| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adantr1 | GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3adantr.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adantr1 | ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpc 998 | . 2 ⊢ ((𝜏 ∧ 𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜒)) | |
| 2 | 3adantr.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 3 | 1, 2 | sylan2 286 | 1 ⊢ ((𝜑 ∧ (𝜏 ∧ 𝜓 ∧ 𝜒)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3ad2antr3 1166 3adant3r1 1214 swopo 4342 isosolem 5874 caovlem2d 6120 divmuldivap 8756 imasmnd2 13154 imasgrp2 13316 imasrng 13588 imasring 13696 |
| Copyright terms: Public domain | W3C validator |