| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantrl | GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| adant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| adantrl | ⊢ ((𝜑 ∧ (𝜃 ∧ 𝜓)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((𝜃 ∧ 𝜓) → 𝜓) | |
| 2 | adant2.1 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 3 | 1, 2 | sylan2 286 | 1 ⊢ ((𝜑 ∧ (𝜃 ∧ 𝜓)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: ad2ant2l 508 ad2ant2rl 511 3ad2antr2 1165 3ad2antr3 1166 xordidc 1418 foco 5508 fvun1 5644 isocnv 5879 isores2 5881 f1oiso2 5895 offval 6165 xp2nd 6251 1stconst 6306 2ndconst 6307 tfrlem9 6404 nnmordi 6601 dom2lem 6862 fundmen 6897 mapen 6942 ssenen 6947 ltsonq 7510 ltexnqq 7520 genprndl 7633 genprndu 7634 ltpopr 7707 ltsopr 7708 ltexprlemm 7712 ltexprlemopl 7713 ltexprlemopu 7715 ltexprlemdisj 7718 ltexprlemfl 7721 ltexprlemfu 7723 mulcmpblnrlemg 7852 cnegexlem2 8247 muladd 8455 eqord1 8555 eqord2 8556 divadddivap 8799 ltmul12a 8932 lemul12b 8933 cju 9033 zextlt 9464 supinfneg 9715 infsupneg 9716 xrre 9941 ixxdisj 10024 iooshf 10073 icodisj 10113 iccshftr 10115 iccshftl 10117 iccdil 10119 icccntr 10121 iccf1o 10125 fzaddel 10180 fzsubel 10181 seq3caopr 10638 seqcaoprg 10639 expineg2 10691 expsubap 10730 expnbnd 10806 facndiv 10882 hashfacen 10979 fprodeq0 11870 lcmdvds 12343 hashdvds 12485 eulerthlemh 12495 pceu 12560 pcqcl 12571 infpnlem1 12624 4sqlem11 12666 mhmpropd 13240 subsubm 13257 grplcan 13336 grplmulf1o 13348 dfgrp3mlem 13372 mulgfng 13402 mulgsubcl 13414 subsubg 13475 eqger 13502 resghm 13538 conjghm 13554 subsubrng 13918 subsubrg 13949 psrgrp 14389 txlm 14693 blininf 14838 xmeter 14850 xmetresbl 14854 limcimo 15079 dvdsppwf1o 15403 fsumdvdsmul 15405 sgmmul 15410 |
| Copyright terms: Public domain | W3C validator |