| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantrl | GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| adant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| adantrl | ⊢ ((𝜑 ∧ (𝜃 ∧ 𝜓)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((𝜃 ∧ 𝜓) → 𝜓) | |
| 2 | adant2.1 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 3 | 1, 2 | sylan2 286 | 1 ⊢ ((𝜑 ∧ (𝜃 ∧ 𝜓)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: ad2ant2l 508 ad2ant2rl 511 3ad2antr2 1165 3ad2antr3 1166 xordidc 1410 foco 5494 fvun1 5630 isocnv 5861 isores2 5863 f1oiso2 5877 offval 6147 xp2nd 6233 1stconst 6288 2ndconst 6289 tfrlem9 6386 nnmordi 6583 dom2lem 6840 fundmen 6874 mapen 6916 ssenen 6921 ltsonq 7484 ltexnqq 7494 genprndl 7607 genprndu 7608 ltpopr 7681 ltsopr 7682 ltexprlemm 7686 ltexprlemopl 7687 ltexprlemopu 7689 ltexprlemdisj 7692 ltexprlemfl 7695 ltexprlemfu 7697 mulcmpblnrlemg 7826 cnegexlem2 8221 muladd 8429 eqord1 8529 eqord2 8530 divadddivap 8773 ltmul12a 8906 lemul12b 8907 cju 9007 zextlt 9437 supinfneg 9688 infsupneg 9689 xrre 9914 ixxdisj 9997 iooshf 10046 icodisj 10086 iccshftr 10088 iccshftl 10090 iccdil 10092 icccntr 10094 iccf1o 10098 fzaddel 10153 fzsubel 10154 seq3caopr 10606 seqcaoprg 10607 expineg2 10659 expsubap 10698 expnbnd 10774 facndiv 10850 hashfacen 10947 fprodeq0 11801 lcmdvds 12274 hashdvds 12416 eulerthlemh 12426 pceu 12491 pcqcl 12502 infpnlem1 12555 4sqlem11 12597 mhmpropd 13170 subsubm 13187 grplcan 13266 grplmulf1o 13278 dfgrp3mlem 13302 mulgfng 13332 mulgsubcl 13344 subsubg 13405 eqger 13432 resghm 13468 conjghm 13484 subsubrng 13848 subsubrg 13879 psrgrp 14319 txlm 14623 blininf 14768 xmeter 14780 xmetresbl 14784 limcimo 15009 dvdsppwf1o 15333 fsumdvdsmul 15335 sgmmul 15340 |
| Copyright terms: Public domain | W3C validator |