![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > adantrl | GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
adant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
adantrl | ⊢ ((𝜑 ∧ (𝜃 ∧ 𝜓)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . 2 ⊢ ((𝜃 ∧ 𝜓) → 𝜓) | |
2 | adant2.1 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
3 | 1, 2 | sylan2 286 | 1 ⊢ ((𝜑 ∧ (𝜃 ∧ 𝜓)) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: ad2ant2l 508 ad2ant2rl 511 3ad2antr2 1163 3ad2antr3 1164 xordidc 1399 foco 5450 fvun1 5584 isocnv 5814 isores2 5816 f1oiso2 5830 offval 6092 xp2nd 6169 1stconst 6224 2ndconst 6225 tfrlem9 6322 nnmordi 6519 dom2lem 6774 fundmen 6808 mapen 6848 ssenen 6853 ltsonq 7399 ltexnqq 7409 genprndl 7522 genprndu 7523 ltpopr 7596 ltsopr 7597 ltexprlemm 7601 ltexprlemopl 7602 ltexprlemopu 7604 ltexprlemdisj 7607 ltexprlemfl 7610 ltexprlemfu 7612 mulcmpblnrlemg 7741 cnegexlem2 8135 muladd 8343 eqord1 8442 eqord2 8443 divadddivap 8686 ltmul12a 8819 lemul12b 8820 cju 8920 zextlt 9347 supinfneg 9597 infsupneg 9598 xrre 9822 ixxdisj 9905 iooshf 9954 icodisj 9994 iccshftr 9996 iccshftl 9998 iccdil 10000 icccntr 10002 iccf1o 10006 fzaddel 10061 fzsubel 10062 seq3caopr 10485 expineg2 10531 expsubap 10570 expnbnd 10646 facndiv 10721 hashfacen 10818 fprodeq0 11627 lcmdvds 12081 hashdvds 12223 eulerthlemh 12233 pceu 12297 pcqcl 12308 infpnlem1 12359 mhmpropd 12862 grplcan 12937 grplmulf1o 12949 dfgrp3mlem 12973 mulgfng 12992 mulgsubcl 13002 subsubg 13062 eqger 13088 subsubrg 13371 txlm 13864 blininf 14009 xmeter 14021 xmetresbl 14025 limcimo 14219 |
Copyright terms: Public domain | W3C validator |