| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantrl | GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| adant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| adantrl | ⊢ ((𝜑 ∧ (𝜃 ∧ 𝜓)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((𝜃 ∧ 𝜓) → 𝜓) | |
| 2 | adant2.1 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 3 | 1, 2 | sylan2 286 | 1 ⊢ ((𝜑 ∧ (𝜃 ∧ 𝜓)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: ad2ant2l 508 ad2ant2rl 511 3ad2antr2 1165 3ad2antr3 1166 xordidc 1418 foco 5503 fvun1 5639 isocnv 5870 isores2 5872 f1oiso2 5886 offval 6156 xp2nd 6242 1stconst 6297 2ndconst 6298 tfrlem9 6395 nnmordi 6592 dom2lem 6849 fundmen 6883 mapen 6925 ssenen 6930 ltsonq 7493 ltexnqq 7503 genprndl 7616 genprndu 7617 ltpopr 7690 ltsopr 7691 ltexprlemm 7695 ltexprlemopl 7696 ltexprlemopu 7698 ltexprlemdisj 7701 ltexprlemfl 7704 ltexprlemfu 7706 mulcmpblnrlemg 7835 cnegexlem2 8230 muladd 8438 eqord1 8538 eqord2 8539 divadddivap 8782 ltmul12a 8915 lemul12b 8916 cju 9016 zextlt 9447 supinfneg 9698 infsupneg 9699 xrre 9924 ixxdisj 10007 iooshf 10056 icodisj 10096 iccshftr 10098 iccshftl 10100 iccdil 10102 icccntr 10104 iccf1o 10108 fzaddel 10163 fzsubel 10164 seq3caopr 10621 seqcaoprg 10622 expineg2 10674 expsubap 10713 expnbnd 10789 facndiv 10865 hashfacen 10962 fprodeq0 11847 lcmdvds 12320 hashdvds 12462 eulerthlemh 12472 pceu 12537 pcqcl 12548 infpnlem1 12601 4sqlem11 12643 mhmpropd 13216 subsubm 13233 grplcan 13312 grplmulf1o 13324 dfgrp3mlem 13348 mulgfng 13378 mulgsubcl 13390 subsubg 13451 eqger 13478 resghm 13514 conjghm 13530 subsubrng 13894 subsubrg 13925 psrgrp 14365 txlm 14669 blininf 14814 xmeter 14826 xmetresbl 14830 limcimo 15055 dvdsppwf1o 15379 fsumdvdsmul 15381 sgmmul 15386 |
| Copyright terms: Public domain | W3C validator |