![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > adantrl | GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
adant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
adantrl | ⊢ ((𝜑 ∧ (𝜃 ∧ 𝜓)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . 2 ⊢ ((𝜃 ∧ 𝜓) → 𝜓) | |
2 | adant2.1 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
3 | 1, 2 | sylan2 286 | 1 ⊢ ((𝜑 ∧ (𝜃 ∧ 𝜓)) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: ad2ant2l 508 ad2ant2rl 511 3ad2antr2 1165 3ad2antr3 1166 xordidc 1410 foco 5487 fvun1 5623 isocnv 5854 isores2 5856 f1oiso2 5870 offval 6138 xp2nd 6219 1stconst 6274 2ndconst 6275 tfrlem9 6372 nnmordi 6569 dom2lem 6826 fundmen 6860 mapen 6902 ssenen 6907 ltsonq 7458 ltexnqq 7468 genprndl 7581 genprndu 7582 ltpopr 7655 ltsopr 7656 ltexprlemm 7660 ltexprlemopl 7661 ltexprlemopu 7663 ltexprlemdisj 7666 ltexprlemfl 7669 ltexprlemfu 7671 mulcmpblnrlemg 7800 cnegexlem2 8195 muladd 8403 eqord1 8502 eqord2 8503 divadddivap 8746 ltmul12a 8879 lemul12b 8880 cju 8980 zextlt 9409 supinfneg 9660 infsupneg 9661 xrre 9886 ixxdisj 9969 iooshf 10018 icodisj 10058 iccshftr 10060 iccshftl 10062 iccdil 10064 icccntr 10066 iccf1o 10070 fzaddel 10125 fzsubel 10126 seq3caopr 10566 seqcaoprg 10567 expineg2 10619 expsubap 10658 expnbnd 10734 facndiv 10810 hashfacen 10907 fprodeq0 11760 lcmdvds 12217 hashdvds 12359 eulerthlemh 12369 pceu 12433 pcqcl 12444 infpnlem1 12497 4sqlem11 12539 mhmpropd 13038 subsubm 13055 grplcan 13134 grplmulf1o 13146 dfgrp3mlem 13170 mulgfng 13194 mulgsubcl 13206 subsubg 13267 eqger 13294 resghm 13330 conjghm 13346 subsubrng 13710 subsubrg 13741 txlm 14447 blininf 14592 xmeter 14604 xmetresbl 14608 limcimo 14819 |
Copyright terms: Public domain | W3C validator |