| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantrl | GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| adant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| adantrl | ⊢ ((𝜑 ∧ (𝜃 ∧ 𝜓)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((𝜃 ∧ 𝜓) → 𝜓) | |
| 2 | adant2.1 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 3 | 1, 2 | sylan2 286 | 1 ⊢ ((𝜑 ∧ (𝜃 ∧ 𝜓)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: ad2ant2l 508 ad2ant2rl 511 3ad2antr2 1165 3ad2antr3 1166 xordidc 1410 foco 5494 fvun1 5630 isocnv 5861 isores2 5863 f1oiso2 5877 offval 6147 xp2nd 6233 1stconst 6288 2ndconst 6289 tfrlem9 6386 nnmordi 6583 dom2lem 6840 fundmen 6874 mapen 6916 ssenen 6921 ltsonq 7482 ltexnqq 7492 genprndl 7605 genprndu 7606 ltpopr 7679 ltsopr 7680 ltexprlemm 7684 ltexprlemopl 7685 ltexprlemopu 7687 ltexprlemdisj 7690 ltexprlemfl 7693 ltexprlemfu 7695 mulcmpblnrlemg 7824 cnegexlem2 8219 muladd 8427 eqord1 8527 eqord2 8528 divadddivap 8771 ltmul12a 8904 lemul12b 8905 cju 9005 zextlt 9435 supinfneg 9686 infsupneg 9687 xrre 9912 ixxdisj 9995 iooshf 10044 icodisj 10084 iccshftr 10086 iccshftl 10088 iccdil 10090 icccntr 10092 iccf1o 10096 fzaddel 10151 fzsubel 10152 seq3caopr 10604 seqcaoprg 10605 expineg2 10657 expsubap 10696 expnbnd 10772 facndiv 10848 hashfacen 10945 fprodeq0 11799 lcmdvds 12272 hashdvds 12414 eulerthlemh 12424 pceu 12489 pcqcl 12500 infpnlem1 12553 4sqlem11 12595 mhmpropd 13168 subsubm 13185 grplcan 13264 grplmulf1o 13276 dfgrp3mlem 13300 mulgfng 13330 mulgsubcl 13342 subsubg 13403 eqger 13430 resghm 13466 conjghm 13482 subsubrng 13846 subsubrg 13877 psrgrp 14313 txlm 14599 blininf 14744 xmeter 14756 xmetresbl 14760 limcimo 14985 dvdsppwf1o 15309 fsumdvdsmul 15311 sgmmul 15316 |
| Copyright terms: Public domain | W3C validator |