| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantrl | GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| adant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| adantrl | ⊢ ((𝜑 ∧ (𝜃 ∧ 𝜓)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((𝜃 ∧ 𝜓) → 𝜓) | |
| 2 | adant2.1 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 3 | 1, 2 | sylan2 286 | 1 ⊢ ((𝜑 ∧ (𝜃 ∧ 𝜓)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: ad2ant2l 508 ad2ant2rl 511 3ad2antr2 1187 3ad2antr3 1188 xordidc 1441 foco 5558 fvun1 5699 isocnv 5934 isores2 5936 f1oiso2 5950 offval 6224 xp2nd 6310 1stconst 6365 2ndconst 6366 tfrlem9 6463 nnmordi 6660 dom2lem 6921 fundmen 6957 mapen 7003 ssenen 7008 ltsonq 7581 ltexnqq 7591 genprndl 7704 genprndu 7705 ltpopr 7778 ltsopr 7779 ltexprlemm 7783 ltexprlemopl 7784 ltexprlemopu 7786 ltexprlemdisj 7789 ltexprlemfl 7792 ltexprlemfu 7794 mulcmpblnrlemg 7923 cnegexlem2 8318 muladd 8526 eqord1 8626 eqord2 8627 divadddivap 8870 ltmul12a 9003 lemul12b 9004 cju 9104 zextlt 9535 supinfneg 9786 infsupneg 9787 xrre 10012 ixxdisj 10095 iooshf 10144 icodisj 10184 iccshftr 10186 iccshftl 10188 iccdil 10190 icccntr 10192 iccf1o 10196 fzaddel 10251 fzsubel 10252 seq3caopr 10712 seqcaoprg 10713 expineg2 10765 expsubap 10804 expnbnd 10880 facndiv 10956 hashfacen 11053 ccatpfx 11228 swrdccatfn 11251 swrdccatin2 11256 fprodeq0 12123 lcmdvds 12596 hashdvds 12738 eulerthlemh 12748 pceu 12813 pcqcl 12824 infpnlem1 12877 4sqlem11 12919 mhmpropd 13494 subsubm 13511 grplcan 13590 grplmulf1o 13602 dfgrp3mlem 13626 mulgfng 13656 mulgsubcl 13668 subsubg 13729 eqger 13756 resghm 13792 conjghm 13808 subsubrng 14172 subsubrg 14203 psrgrp 14643 txlm 14947 blininf 15092 xmeter 15104 xmetresbl 15108 limcimo 15333 dvdsppwf1o 15657 fsumdvdsmul 15659 sgmmul 15664 |
| Copyright terms: Public domain | W3C validator |