| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantrl | GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| adant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| adantrl | ⊢ ((𝜑 ∧ (𝜃 ∧ 𝜓)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((𝜃 ∧ 𝜓) → 𝜓) | |
| 2 | adant2.1 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 3 | 1, 2 | sylan2 286 | 1 ⊢ ((𝜑 ∧ (𝜃 ∧ 𝜓)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: ad2ant2l 508 ad2ant2rl 511 3ad2antr2 1166 3ad2antr3 1167 xordidc 1419 foco 5521 fvun1 5658 isocnv 5893 isores2 5895 f1oiso2 5909 offval 6179 xp2nd 6265 1stconst 6320 2ndconst 6321 tfrlem9 6418 nnmordi 6615 dom2lem 6876 fundmen 6912 mapen 6958 ssenen 6963 ltsonq 7531 ltexnqq 7541 genprndl 7654 genprndu 7655 ltpopr 7728 ltsopr 7729 ltexprlemm 7733 ltexprlemopl 7734 ltexprlemopu 7736 ltexprlemdisj 7739 ltexprlemfl 7742 ltexprlemfu 7744 mulcmpblnrlemg 7873 cnegexlem2 8268 muladd 8476 eqord1 8576 eqord2 8577 divadddivap 8820 ltmul12a 8953 lemul12b 8954 cju 9054 zextlt 9485 supinfneg 9736 infsupneg 9737 xrre 9962 ixxdisj 10045 iooshf 10094 icodisj 10134 iccshftr 10136 iccshftl 10138 iccdil 10140 icccntr 10142 iccf1o 10146 fzaddel 10201 fzsubel 10202 seq3caopr 10662 seqcaoprg 10663 expineg2 10715 expsubap 10754 expnbnd 10830 facndiv 10906 hashfacen 11003 ccatpfx 11177 fprodeq0 12003 lcmdvds 12476 hashdvds 12618 eulerthlemh 12628 pceu 12693 pcqcl 12704 infpnlem1 12757 4sqlem11 12799 mhmpropd 13373 subsubm 13390 grplcan 13469 grplmulf1o 13481 dfgrp3mlem 13505 mulgfng 13535 mulgsubcl 13547 subsubg 13608 eqger 13635 resghm 13671 conjghm 13687 subsubrng 14051 subsubrg 14082 psrgrp 14522 txlm 14826 blininf 14971 xmeter 14983 xmetresbl 14987 limcimo 15212 dvdsppwf1o 15536 fsumdvdsmul 15538 sgmmul 15543 |
| Copyright terms: Public domain | W3C validator |