| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adantrl | GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| adant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| adantrl | ⊢ ((𝜑 ∧ (𝜃 ∧ 𝜓)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((𝜃 ∧ 𝜓) → 𝜓) | |
| 2 | adant2.1 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 3 | 1, 2 | sylan2 286 | 1 ⊢ ((𝜑 ∧ (𝜃 ∧ 𝜓)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: ad2ant2l 508 ad2ant2rl 511 3ad2antr2 1165 3ad2antr3 1166 xordidc 1410 foco 5491 fvun1 5627 isocnv 5858 isores2 5860 f1oiso2 5874 offval 6143 xp2nd 6224 1stconst 6279 2ndconst 6280 tfrlem9 6377 nnmordi 6574 dom2lem 6831 fundmen 6865 mapen 6907 ssenen 6912 ltsonq 7465 ltexnqq 7475 genprndl 7588 genprndu 7589 ltpopr 7662 ltsopr 7663 ltexprlemm 7667 ltexprlemopl 7668 ltexprlemopu 7670 ltexprlemdisj 7673 ltexprlemfl 7676 ltexprlemfu 7678 mulcmpblnrlemg 7807 cnegexlem2 8202 muladd 8410 eqord1 8510 eqord2 8511 divadddivap 8754 ltmul12a 8887 lemul12b 8888 cju 8988 zextlt 9418 supinfneg 9669 infsupneg 9670 xrre 9895 ixxdisj 9978 iooshf 10027 icodisj 10067 iccshftr 10069 iccshftl 10071 iccdil 10073 icccntr 10075 iccf1o 10079 fzaddel 10134 fzsubel 10135 seq3caopr 10587 seqcaoprg 10588 expineg2 10640 expsubap 10679 expnbnd 10755 facndiv 10831 hashfacen 10928 fprodeq0 11782 lcmdvds 12247 hashdvds 12389 eulerthlemh 12399 pceu 12464 pcqcl 12475 infpnlem1 12528 4sqlem11 12570 mhmpropd 13098 subsubm 13115 grplcan 13194 grplmulf1o 13206 dfgrp3mlem 13230 mulgfng 13254 mulgsubcl 13266 subsubg 13327 eqger 13354 resghm 13390 conjghm 13406 subsubrng 13770 subsubrg 13801 txlm 14515 blininf 14660 xmeter 14672 xmetresbl 14676 limcimo 14901 dvdsppwf1o 15225 fsumdvdsmul 15227 sgmmul 15232 |
| Copyright terms: Public domain | W3C validator |