Step | Hyp | Ref
| Expression |
1 | | grprcan.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐺) |
2 | | grprcan.p |
. . . . 5
⊢ + =
(+g‘𝐺) |
3 | | eqid 2171 |
. . . . 5
⊢
(0g‘𝐺) = (0g‘𝐺) |
4 | 1, 2, 3 | grpinvex 12722 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑍) = (0g‘𝐺)) |
5 | 4 | 3ad2antr3 1160 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ∃𝑦 ∈ 𝐵 (𝑦 + 𝑍) = (0g‘𝐺)) |
6 | | simprr 528 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + 𝑍) = (𝑌 + 𝑍)) |
7 | 6 | oveq1d 5872 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → ((𝑋 + 𝑍) + 𝑦) = ((𝑌 + 𝑍) + 𝑦)) |
8 | | simpll 525 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝐺 ∈ Grp) |
9 | 1, 2 | grpass 12721 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤))) |
10 | 8, 9 | sylan 281 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤))) |
11 | | simplr1 1035 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑋 ∈ 𝐵) |
12 | | simplr3 1037 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑍 ∈ 𝐵) |
13 | | simprll 533 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑦 ∈ 𝐵) |
14 | 10, 11, 12, 13 | caovassd 6016 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → ((𝑋 + 𝑍) + 𝑦) = (𝑋 + (𝑍 + 𝑦))) |
15 | | simplr2 1036 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑌 ∈ 𝐵) |
16 | 10, 15, 12, 13 | caovassd 6016 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → ((𝑌 + 𝑍) + 𝑦) = (𝑌 + (𝑍 + 𝑦))) |
17 | 7, 14, 16 | 3eqtr3d 2212 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + (𝑍 + 𝑦)) = (𝑌 + (𝑍 + 𝑦))) |
18 | 1, 2 | grpcl 12720 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) → (𝑢 + 𝑣) ∈ 𝐵) |
19 | 8, 18 | syl3an1 1267 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) → (𝑢 + 𝑣) ∈ 𝐵) |
20 | 1, 3 | grpidcl 12738 |
. . . . . . . . . 10
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝐵) |
21 | 8, 20 | syl 14 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (0g‘𝐺) ∈ 𝐵) |
22 | 1, 2, 3 | grplid 12740 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑢 ∈ 𝐵) → ((0g‘𝐺) + 𝑢) = 𝑢) |
23 | 8, 22 | sylan 281 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑢 ∈ 𝐵) → ((0g‘𝐺) + 𝑢) = 𝑢) |
24 | 1, 2, 3 | grpinvex 12722 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑢 ∈ 𝐵) → ∃𝑣 ∈ 𝐵 (𝑣 + 𝑢) = (0g‘𝐺)) |
25 | 8, 24 | sylan 281 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑢 ∈ 𝐵) → ∃𝑣 ∈ 𝐵 (𝑣 + 𝑢) = (0g‘𝐺)) |
26 | | simpr 109 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑍 ∈ 𝐵) → 𝑍 ∈ 𝐵) |
27 | 13 | adantr 274 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑍 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
28 | | simprlr 534 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑦 + 𝑍) = (0g‘𝐺)) |
29 | 28 | adantr 274 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑍 ∈ 𝐵) → (𝑦 + 𝑍) = (0g‘𝐺)) |
30 | 19, 21, 23, 10, 25, 26, 27, 29 | grprinvd 12644 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) ∧ 𝑍 ∈ 𝐵) → (𝑍 + 𝑦) = (0g‘𝐺)) |
31 | 12, 30 | mpdan 419 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑍 + 𝑦) = (0g‘𝐺)) |
32 | 31 | oveq2d 5873 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + (𝑍 + 𝑦)) = (𝑋 + (0g‘𝐺))) |
33 | 31 | oveq2d 5873 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑌 + (𝑍 + 𝑦)) = (𝑌 + (0g‘𝐺))) |
34 | 17, 32, 33 | 3eqtr3d 2212 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + (0g‘𝐺)) = (𝑌 + (0g‘𝐺))) |
35 | 1, 2, 3 | grprid 12741 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + (0g‘𝐺)) = 𝑋) |
36 | 8, 11, 35 | syl2anc 409 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑋 + (0g‘𝐺)) = 𝑋) |
37 | 1, 2, 3 | grprid 12741 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑌 + (0g‘𝐺)) = 𝑌) |
38 | 8, 15, 37 | syl2anc 409 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → (𝑌 + (0g‘𝐺)) = 𝑌) |
39 | 34, 36, 38 | 3eqtr3d 2212 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ ((𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺)) ∧ (𝑋 + 𝑍) = (𝑌 + 𝑍))) → 𝑋 = 𝑌) |
40 | 39 | expr 373 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (𝑦 ∈ 𝐵 ∧ (𝑦 + 𝑍) = (0g‘𝐺))) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) → 𝑋 = 𝑌)) |
41 | 5, 40 | rexlimddv 2593 |
. 2
⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) → 𝑋 = 𝑌)) |
42 | | oveq1 5864 |
. 2
⊢ (𝑋 = 𝑌 → (𝑋 + 𝑍) = (𝑌 + 𝑍)) |
43 | 41, 42 | impbid1 141 |
1
⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑍) = (𝑌 + 𝑍) ↔ 𝑋 = 𝑌)) |