ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordwe GIF version

Theorem ordwe 4609
Description: Epsilon well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
ordwe (Ord 𝐴 → E We 𝐴)

Proof of Theorem ordwe
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordfr 4608 . 2 (Ord 𝐴 → E Fr 𝐴)
2 ordelord 4413 . . . . 5 ((Ord 𝐴𝑧𝐴) → Ord 𝑧)
323ad2antr3 1166 . . . 4 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → Ord 𝑧)
4 ordtr1 4420 . . . . 5 (Ord 𝑧 → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
5 epel 4324 . . . . . 6 (𝑥 E 𝑦𝑥𝑦)
6 epel 4324 . . . . . 6 (𝑦 E 𝑧𝑦𝑧)
75, 6anbi12i 460 . . . . 5 ((𝑥 E 𝑦𝑦 E 𝑧) ↔ (𝑥𝑦𝑦𝑧))
8 epel 4324 . . . . 5 (𝑥 E 𝑧𝑥𝑧)
94, 7, 83imtr4g 205 . . . 4 (Ord 𝑧 → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
103, 9syl 14 . . 3 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
1110ralrimivvva 2577 . 2 (Ord 𝐴 → ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
12 df-wetr 4366 . 2 ( E We 𝐴 ↔ ( E Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
131, 11, 12sylanbrc 417 1 (Ord 𝐴 → E We 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wcel 2164  wral 2472   class class class wbr 4030   E cep 4319   Fr wfr 4360   We wwe 4362  Ord word 4394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-tr 4129  df-eprel 4321  df-frfor 4363  df-frind 4364  df-wetr 4366  df-iord 4398
This theorem is referenced by:  nnwetri  6974
  Copyright terms: Public domain W3C validator