ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordwe GIF version

Theorem ordwe 4560
Description: Epsilon well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
ordwe (Ord 𝐴 → E We 𝐴)

Proof of Theorem ordwe
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordfr 4559 . 2 (Ord 𝐴 → E Fr 𝐴)
2 ordelord 4366 . . . . 5 ((Ord 𝐴𝑧𝐴) → Ord 𝑧)
323ad2antr3 1159 . . . 4 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → Ord 𝑧)
4 ordtr1 4373 . . . . 5 (Ord 𝑧 → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
5 epel 4277 . . . . . 6 (𝑥 E 𝑦𝑥𝑦)
6 epel 4277 . . . . . 6 (𝑦 E 𝑧𝑦𝑧)
75, 6anbi12i 457 . . . . 5 ((𝑥 E 𝑦𝑦 E 𝑧) ↔ (𝑥𝑦𝑦𝑧))
8 epel 4277 . . . . 5 (𝑥 E 𝑧𝑥𝑧)
94, 7, 83imtr4g 204 . . . 4 (Ord 𝑧 → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
103, 9syl 14 . . 3 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
1110ralrimivvva 2553 . 2 (Ord 𝐴 → ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
12 df-wetr 4319 . 2 ( E We 𝐴 ↔ ( E Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
131, 11, 12sylanbrc 415 1 (Ord 𝐴 → E We 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973  wcel 2141  wral 2448   class class class wbr 3989   E cep 4272   Fr wfr 4313   We wwe 4315  Ord word 4347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-tr 4088  df-eprel 4274  df-frfor 4316  df-frind 4317  df-wetr 4319  df-iord 4351
This theorem is referenced by:  nnwetri  6893
  Copyright terms: Public domain W3C validator