![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordwe | GIF version |
Description: Epsilon well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
ordwe | ⊢ (Ord 𝐴 → E We 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordfr 4607 | . 2 ⊢ (Ord 𝐴 → E Fr 𝐴) | |
2 | ordelord 4412 | . . . . 5 ⊢ ((Ord 𝐴 ∧ 𝑧 ∈ 𝐴) → Ord 𝑧) | |
3 | 2 | 3ad2antr3 1166 | . . . 4 ⊢ ((Ord 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → Ord 𝑧) |
4 | ordtr1 4419 | . . . . 5 ⊢ (Ord 𝑧 → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧) → 𝑥 ∈ 𝑧)) | |
5 | epel 4323 | . . . . . 6 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
6 | epel 4323 | . . . . . 6 ⊢ (𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧) | |
7 | 5, 6 | anbi12i 460 | . . . . 5 ⊢ ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) ↔ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧)) |
8 | epel 4323 | . . . . 5 ⊢ (𝑥 E 𝑧 ↔ 𝑥 ∈ 𝑧) | |
9 | 4, 7, 8 | 3imtr4g 205 | . . . 4 ⊢ (Ord 𝑧 → ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) → 𝑥 E 𝑧)) |
10 | 3, 9 | syl 14 | . . 3 ⊢ ((Ord 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) → 𝑥 E 𝑧)) |
11 | 10 | ralrimivvva 2577 | . 2 ⊢ (Ord 𝐴 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) → 𝑥 E 𝑧)) |
12 | df-wetr 4365 | . 2 ⊢ ( E We 𝐴 ↔ ( E Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) → 𝑥 E 𝑧))) | |
13 | 1, 11, 12 | sylanbrc 417 | 1 ⊢ (Ord 𝐴 → E We 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 ∈ wcel 2164 ∀wral 2472 class class class wbr 4029 E cep 4318 Fr wfr 4359 We wwe 4361 Ord word 4393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-tr 4128 df-eprel 4320 df-frfor 4362 df-frind 4363 df-wetr 4365 df-iord 4397 |
This theorem is referenced by: nnwetri 6972 |
Copyright terms: Public domain | W3C validator |