ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordwe GIF version

Theorem ordwe 4553
Description: Epsilon well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
ordwe (Ord 𝐴 → E We 𝐴)

Proof of Theorem ordwe
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordfr 4552 . 2 (Ord 𝐴 → E Fr 𝐴)
2 ordelord 4359 . . . . 5 ((Ord 𝐴𝑧𝐴) → Ord 𝑧)
323ad2antr3 1154 . . . 4 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → Ord 𝑧)
4 ordtr1 4366 . . . . 5 (Ord 𝑧 → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
5 epel 4270 . . . . . 6 (𝑥 E 𝑦𝑥𝑦)
6 epel 4270 . . . . . 6 (𝑦 E 𝑧𝑦𝑧)
75, 6anbi12i 456 . . . . 5 ((𝑥 E 𝑦𝑦 E 𝑧) ↔ (𝑥𝑦𝑦𝑧))
8 epel 4270 . . . . 5 (𝑥 E 𝑧𝑥𝑧)
94, 7, 83imtr4g 204 . . . 4 (Ord 𝑧 → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
103, 9syl 14 . . 3 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
1110ralrimivvva 2549 . 2 (Ord 𝐴 → ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
12 df-wetr 4312 . 2 ( E We 𝐴 ↔ ( E Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
131, 11, 12sylanbrc 414 1 (Ord 𝐴 → E We 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968  wcel 2136  wral 2444   class class class wbr 3982   E cep 4265   Fr wfr 4306   We wwe 4308  Ord word 4340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-tr 4081  df-eprel 4267  df-frfor 4309  df-frind 4310  df-wetr 4312  df-iord 4344
This theorem is referenced by:  nnwetri  6881
  Copyright terms: Public domain W3C validator