| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordwe | GIF version | ||
| Description: Epsilon well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| ordwe | ⊢ (Ord 𝐴 → E We 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordfr 4631 | . 2 ⊢ (Ord 𝐴 → E Fr 𝐴) | |
| 2 | ordelord 4436 | . . . . 5 ⊢ ((Ord 𝐴 ∧ 𝑧 ∈ 𝐴) → Ord 𝑧) | |
| 3 | 2 | 3ad2antr3 1167 | . . . 4 ⊢ ((Ord 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → Ord 𝑧) |
| 4 | ordtr1 4443 | . . . . 5 ⊢ (Ord 𝑧 → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧) → 𝑥 ∈ 𝑧)) | |
| 5 | epel 4347 | . . . . . 6 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
| 6 | epel 4347 | . . . . . 6 ⊢ (𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧) | |
| 7 | 5, 6 | anbi12i 460 | . . . . 5 ⊢ ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) ↔ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧)) |
| 8 | epel 4347 | . . . . 5 ⊢ (𝑥 E 𝑧 ↔ 𝑥 ∈ 𝑧) | |
| 9 | 4, 7, 8 | 3imtr4g 205 | . . . 4 ⊢ (Ord 𝑧 → ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) → 𝑥 E 𝑧)) |
| 10 | 3, 9 | syl 14 | . . 3 ⊢ ((Ord 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) → 𝑥 E 𝑧)) |
| 11 | 10 | ralrimivvva 2590 | . 2 ⊢ (Ord 𝐴 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) → 𝑥 E 𝑧)) |
| 12 | df-wetr 4389 | . 2 ⊢ ( E We 𝐴 ↔ ( E Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) → 𝑥 E 𝑧))) | |
| 13 | 1, 11, 12 | sylanbrc 417 | 1 ⊢ (Ord 𝐴 → E We 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 ∈ wcel 2177 ∀wral 2485 class class class wbr 4051 E cep 4342 Fr wfr 4383 We wwe 4385 Ord word 4417 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-setind 4593 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-tr 4151 df-eprel 4344 df-frfor 4386 df-frind 4387 df-wetr 4389 df-iord 4421 |
| This theorem is referenced by: nnwetri 7028 |
| Copyright terms: Public domain | W3C validator |