Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordwe | GIF version |
Description: Epsilon well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
ordwe | ⊢ (Ord 𝐴 → E We 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordfr 4533 | . 2 ⊢ (Ord 𝐴 → E Fr 𝐴) | |
2 | ordelord 4341 | . . . . 5 ⊢ ((Ord 𝐴 ∧ 𝑧 ∈ 𝐴) → Ord 𝑧) | |
3 | 2 | 3ad2antr3 1149 | . . . 4 ⊢ ((Ord 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → Ord 𝑧) |
4 | ordtr1 4348 | . . . . 5 ⊢ (Ord 𝑧 → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧) → 𝑥 ∈ 𝑧)) | |
5 | epel 4252 | . . . . . 6 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
6 | epel 4252 | . . . . . 6 ⊢ (𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧) | |
7 | 5, 6 | anbi12i 456 | . . . . 5 ⊢ ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) ↔ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧)) |
8 | epel 4252 | . . . . 5 ⊢ (𝑥 E 𝑧 ↔ 𝑥 ∈ 𝑧) | |
9 | 4, 7, 8 | 3imtr4g 204 | . . . 4 ⊢ (Ord 𝑧 → ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) → 𝑥 E 𝑧)) |
10 | 3, 9 | syl 14 | . . 3 ⊢ ((Ord 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) → 𝑥 E 𝑧)) |
11 | 10 | ralrimivvva 2540 | . 2 ⊢ (Ord 𝐴 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) → 𝑥 E 𝑧)) |
12 | df-wetr 4294 | . 2 ⊢ ( E We 𝐴 ↔ ( E Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 ((𝑥 E 𝑦 ∧ 𝑦 E 𝑧) → 𝑥 E 𝑧))) | |
13 | 1, 11, 12 | sylanbrc 414 | 1 ⊢ (Ord 𝐴 → E We 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 963 ∈ wcel 2128 ∀wral 2435 class class class wbr 3965 E cep 4247 Fr wfr 4288 We wwe 4290 Ord word 4322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-setind 4495 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-tr 4063 df-eprel 4249 df-frfor 4291 df-frind 4292 df-wetr 4294 df-iord 4326 |
This theorem is referenced by: nnwetri 6857 |
Copyright terms: Public domain | W3C validator |