ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordwe GIF version

Theorem ordwe 4577
Description: Epsilon well-orders every ordinal. Proposition 7.4 of [TakeutiZaring] p. 36. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
ordwe (Ord 𝐴 → E We 𝐴)

Proof of Theorem ordwe
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordfr 4576 . 2 (Ord 𝐴 → E Fr 𝐴)
2 ordelord 4383 . . . . 5 ((Ord 𝐴𝑧𝐴) → Ord 𝑧)
323ad2antr3 1164 . . . 4 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → Ord 𝑧)
4 ordtr1 4390 . . . . 5 (Ord 𝑧 → ((𝑥𝑦𝑦𝑧) → 𝑥𝑧))
5 epel 4294 . . . . . 6 (𝑥 E 𝑦𝑥𝑦)
6 epel 4294 . . . . . 6 (𝑦 E 𝑧𝑦𝑧)
75, 6anbi12i 460 . . . . 5 ((𝑥 E 𝑦𝑦 E 𝑧) ↔ (𝑥𝑦𝑦𝑧))
8 epel 4294 . . . . 5 (𝑥 E 𝑧𝑥𝑧)
94, 7, 83imtr4g 205 . . . 4 (Ord 𝑧 → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
103, 9syl 14 . . 3 ((Ord 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
1110ralrimivvva 2560 . 2 (Ord 𝐴 → ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧))
12 df-wetr 4336 . 2 ( E We 𝐴 ↔ ( E Fr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐴 ((𝑥 E 𝑦𝑦 E 𝑧) → 𝑥 E 𝑧)))
131, 11, 12sylanbrc 417 1 (Ord 𝐴 → E We 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978  wcel 2148  wral 2455   class class class wbr 4005   E cep 4289   Fr wfr 4330   We wwe 4332  Ord word 4364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-tr 4104  df-eprel 4291  df-frfor 4333  df-frind 4334  df-wetr 4336  df-iord 4368
This theorem is referenced by:  nnwetri  6917
  Copyright terms: Public domain W3C validator