![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpaddsubass | GIF version |
Description: Associative-type law for group subtraction and addition. (Contributed by NM, 16-Apr-2014.) |
Ref | Expression |
---|---|
grpsubadd.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubadd.p | ⊢ + = (+g‘𝐺) |
grpsubadd.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
grpaddsubass | ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) − 𝑍) = (𝑋 + (𝑌 − 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐺 ∈ Grp) | |
2 | simpr1 1003 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
3 | simpr2 1004 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
4 | grpsubadd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
5 | eqid 2177 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
6 | 4, 5 | grpinvcl 12853 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
7 | 6 | 3ad2antr3 1164 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((invg‘𝐺)‘𝑍) ∈ 𝐵) |
8 | grpsubadd.p | . . . 4 ⊢ + = (+g‘𝐺) | |
9 | 4, 8 | grpass 12818 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ((invg‘𝐺)‘𝑍) ∈ 𝐵)) → ((𝑋 + 𝑌) + ((invg‘𝐺)‘𝑍)) = (𝑋 + (𝑌 + ((invg‘𝐺)‘𝑍)))) |
10 | 1, 2, 3, 7, 9 | syl13anc 1240 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + ((invg‘𝐺)‘𝑍)) = (𝑋 + (𝑌 + ((invg‘𝐺)‘𝑍)))) |
11 | 4, 8 | grpcl 12817 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
12 | 11 | 3adant3r3 1214 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 + 𝑌) ∈ 𝐵) |
13 | simpr3 1005 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
14 | grpsubadd.m | . . . 4 ⊢ − = (-g‘𝐺) | |
15 | 4, 8, 5, 14 | grpsubval 12851 | . . 3 ⊢ (((𝑋 + 𝑌) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 + 𝑌) − 𝑍) = ((𝑋 + 𝑌) + ((invg‘𝐺)‘𝑍))) |
16 | 12, 13, 15 | syl2anc 411 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) − 𝑍) = ((𝑋 + 𝑌) + ((invg‘𝐺)‘𝑍))) |
17 | 4, 8, 5, 14 | grpsubval 12851 | . . . 4 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 − 𝑍) = (𝑌 + ((invg‘𝐺)‘𝑍))) |
18 | 3, 13, 17 | syl2anc 411 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 − 𝑍) = (𝑌 + ((invg‘𝐺)‘𝑍))) |
19 | 18 | oveq2d 5888 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 + (𝑌 − 𝑍)) = (𝑋 + (𝑌 + ((invg‘𝐺)‘𝑍)))) |
20 | 10, 16, 19 | 3eqtr4d 2220 | 1 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) − 𝑍) = (𝑋 + (𝑌 − 𝑍))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ‘cfv 5215 (class class class)co 5872 Basecbs 12454 +gcplusg 12528 Grpcgrp 12809 invgcminusg 12810 -gcsg 12811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4117 ax-sep 4120 ax-pow 4173 ax-pr 4208 ax-un 4432 ax-setind 4535 ax-cnex 7899 ax-resscn 7900 ax-1re 7902 ax-addrcl 7905 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4003 df-opab 4064 df-mpt 4065 df-id 4292 df-xp 4631 df-rel 4632 df-cnv 4633 df-co 4634 df-dm 4635 df-rn 4636 df-res 4637 df-ima 4638 df-iota 5177 df-fun 5217 df-fn 5218 df-f 5219 df-f1 5220 df-fo 5221 df-f1o 5222 df-fv 5223 df-riota 5828 df-ov 5875 df-oprab 5876 df-mpo 5877 df-1st 6138 df-2nd 6139 df-inn 8916 df-2 8974 df-ndx 12457 df-slot 12458 df-base 12460 df-plusg 12541 df-0g 12695 df-mgm 12707 df-sgrp 12740 df-mnd 12750 df-grp 12812 df-minusg 12813 df-sbg 12814 |
This theorem is referenced by: grppncan 12893 grpnpncan 12897 nsgconj 12997 abladdsub 13049 ablsubsub 13052 |
Copyright terms: Public domain | W3C validator |