| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3anandis | GIF version | ||
| Description: Inference that undistributes a triple conjunction in the antecedent. (Contributed by NM, 18-Apr-2007.) | 
| Ref | Expression | 
|---|---|
| 3anandis.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜃)) → 𝜏) | 
| Ref | Expression | 
|---|---|
| 3anandis | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜑) | |
| 2 | simpr1 1005 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜓) | |
| 3 | simpr2 1006 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜒) | |
| 4 | simpr3 1007 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜃) | |
| 5 | 3anandis.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜃)) → 𝜏) | |
| 6 | 1, 2, 1, 3, 1, 4, 5 | syl222anc 1265 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |