Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simpr1 | GIF version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpr1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 982 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
2 | 1 | adantl 275 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 965 |
This theorem is referenced by: simplr1 1024 simprr1 1030 simp1r1 1078 simp2r1 1084 simp3r1 1090 3anandis 1329 isopolem 5767 caovlem2d 6007 tfrlemibacc 6267 tfrlemibfn 6269 tfr1onlembacc 6283 tfr1onlembfn 6285 tfrcllembacc 6296 tfrcllembfn 6298 eqsupti 6932 prmuloc2 7470 ltntri 7986 elioc2 9822 elico2 9823 elicc2 9824 fseq1p1m1 9978 elfz0ubfz0 10006 ico0 10143 seq3f1olemp 10383 seq3f1oleml 10384 bcval5 10619 isumss2 11272 tanaddap 11618 dvds2ln 11701 divalglemeunn 11793 divalglemex 11794 divalglemeuneg 11795 qredeq 11953 isstructr 12165 icnpimaex 12571 cnptopresti 12598 upxp 12632 psmettri 12690 isxmet2d 12708 xmettri 12732 metrtri 12737 xmetres2 12739 bldisj 12761 blss2ps 12766 blss2 12767 xmstri2 12830 mstri2 12831 xmstri 12832 mstri 12833 xmstri3 12834 mstri3 12835 msrtri 12836 comet 12859 bdbl 12863 xmetxp 12867 dvconst 13021 findset 13479 |
Copyright terms: Public domain | W3C validator |