| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpr1 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpr1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1021 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 2 | 1 | adantl 277 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: simplr1 1063 simprr1 1069 simp1r1 1117 simp2r1 1123 simp3r1 1129 3anandis 1381 isopolem 5952 caovlem2d 6204 tfrlemibacc 6478 tfrlemibfn 6480 tfr1onlembacc 6494 tfr1onlembfn 6496 tfrcllembacc 6507 tfrcllembfn 6509 eqsupti 7171 prmuloc2 7762 ltntri 8282 elioc2 10140 elico2 10141 elicc2 10142 fseq1p1m1 10298 elfz0ubfz0 10329 ico0 10489 seq3f1olemp 10745 seq3f1oleml 10746 bcval5 10993 swrdsbslen 11206 ccatswrd 11210 isumss2 11912 tanaddap 12258 dvds2ln 12343 divalglemeunn 12440 divalglemex 12441 divalglemeuneg 12442 qredeq 12626 pcdvdstr 12858 isstructr 13055 prdssgrpd 13456 prdsmndd 13489 imasmnd2 13493 mndissubm 13516 grpsubrcan 13622 grpsubadd 13629 grpsubsub 13630 grpaddsubass 13631 grpsubsub4 13634 grpnnncan2 13638 imasgrp2 13655 mulgnndir 13696 mulgnn0dir 13697 mulgdir 13699 mulgnnass 13702 mulgnn0ass 13703 mulgass 13704 mulgsubdir 13707 issubg2m 13734 eqgval 13768 qusgrp 13777 kerf1ghm 13819 cmn32 13849 cmn12 13851 abladdsub 13860 rngass 13910 imasrng 13927 srgass 13942 ringdilem 13983 ringass 13987 imasring 14035 opprrng 14048 opprring 14050 mulgass3 14056 unitgrp 14088 dvrass 14111 dvrdir 14115 subrgunit 14211 issubrg2 14213 aprap 14258 islss3 14351 sralmod 14422 icnpimaex 14893 cnptopresti 14920 upxp 14954 psmettri 15012 isxmet2d 15030 xmettri 15054 metrtri 15059 xmetres2 15061 bldisj 15083 blss2ps 15088 blss2 15089 xmstri2 15152 mstri2 15153 xmstri 15154 mstri 15155 xmstri3 15156 mstri3 15157 msrtri 15158 comet 15181 bdbl 15185 xmetxp 15189 dvconst 15376 dvconstre 15378 dvconstss 15380 sgmmul 15678 findset 16332 pw1ndom3 16383 |
| Copyright terms: Public domain | W3C validator |