| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > simpr1 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) | 
| Ref | Expression | 
|---|---|
| simpr1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp1 999 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 2 | 1 | adantl 277 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: simplr1 1041 simprr1 1047 simp1r1 1095 simp2r1 1101 simp3r1 1107 3anandis 1358 isopolem 5869 caovlem2d 6116 tfrlemibacc 6384 tfrlemibfn 6386 tfr1onlembacc 6400 tfr1onlembfn 6402 tfrcllembacc 6413 tfrcllembfn 6415 eqsupti 7062 prmuloc2 7634 ltntri 8154 elioc2 10011 elico2 10012 elicc2 10013 fseq1p1m1 10169 elfz0ubfz0 10200 ico0 10351 seq3f1olemp 10607 seq3f1oleml 10608 bcval5 10855 isumss2 11558 tanaddap 11904 dvds2ln 11989 divalglemeunn 12086 divalglemex 12087 divalglemeuneg 12088 qredeq 12264 pcdvdstr 12496 isstructr 12693 mndissubm 13107 grpsubrcan 13213 grpsubadd 13220 grpsubsub 13221 grpaddsubass 13222 grpsubsub4 13225 grpnnncan2 13229 imasgrp2 13240 mulgnndir 13281 mulgnn0dir 13282 mulgdir 13284 mulgnnass 13287 mulgnn0ass 13288 mulgass 13289 mulgsubdir 13292 issubg2m 13319 eqgval 13353 qusgrp 13362 kerf1ghm 13404 cmn32 13434 cmn12 13436 abladdsub 13445 rngass 13495 imasrng 13512 srgass 13527 ringdilem 13568 ringass 13572 imasring 13620 opprrng 13633 opprring 13635 mulgass3 13641 unitgrp 13672 dvrass 13695 dvrdir 13699 subrgunit 13795 issubrg2 13797 aprap 13842 islss3 13935 sralmod 14006 icnpimaex 14447 cnptopresti 14474 upxp 14508 psmettri 14566 isxmet2d 14584 xmettri 14608 metrtri 14613 xmetres2 14615 bldisj 14637 blss2ps 14642 blss2 14643 xmstri2 14706 mstri2 14707 xmstri 14708 mstri 14709 xmstri3 14710 mstri3 14711 msrtri 14712 comet 14735 bdbl 14739 xmetxp 14743 dvconst 14930 dvconstre 14932 dvconstss 14934 sgmmul 15232 findset 15591 | 
| Copyright terms: Public domain | W3C validator |