| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpr1 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpr1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 999 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 2 | 1 | adantl 277 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simplr1 1041 simprr1 1047 simp1r1 1095 simp2r1 1101 simp3r1 1107 3anandis 1358 isopolem 5872 caovlem2d 6120 tfrlemibacc 6393 tfrlemibfn 6395 tfr1onlembacc 6409 tfr1onlembfn 6411 tfrcllembacc 6422 tfrcllembfn 6424 eqsupti 7071 prmuloc2 7653 ltntri 8173 elioc2 10030 elico2 10031 elicc2 10032 fseq1p1m1 10188 elfz0ubfz0 10219 ico0 10370 seq3f1olemp 10626 seq3f1oleml 10627 bcval5 10874 isumss2 11577 tanaddap 11923 dvds2ln 12008 divalglemeunn 12105 divalglemex 12106 divalglemeuneg 12107 qredeq 12291 pcdvdstr 12523 isstructr 12720 prdssgrpd 13119 prdsmndd 13152 imasmnd2 13156 mndissubm 13179 grpsubrcan 13285 grpsubadd 13292 grpsubsub 13293 grpaddsubass 13294 grpsubsub4 13297 grpnnncan2 13301 imasgrp2 13318 mulgnndir 13359 mulgnn0dir 13360 mulgdir 13362 mulgnnass 13365 mulgnn0ass 13366 mulgass 13367 mulgsubdir 13370 issubg2m 13397 eqgval 13431 qusgrp 13440 kerf1ghm 13482 cmn32 13512 cmn12 13514 abladdsub 13523 rngass 13573 imasrng 13590 srgass 13605 ringdilem 13646 ringass 13650 imasring 13698 opprrng 13711 opprring 13713 mulgass3 13719 unitgrp 13750 dvrass 13773 dvrdir 13777 subrgunit 13873 issubrg2 13875 aprap 13920 islss3 14013 sralmod 14084 icnpimaex 14533 cnptopresti 14560 upxp 14594 psmettri 14652 isxmet2d 14670 xmettri 14694 metrtri 14699 xmetres2 14701 bldisj 14723 blss2ps 14728 blss2 14729 xmstri2 14792 mstri2 14793 xmstri 14794 mstri 14795 xmstri3 14796 mstri3 14797 msrtri 14798 comet 14821 bdbl 14825 xmetxp 14829 dvconst 15016 dvconstre 15018 dvconstss 15020 sgmmul 15318 findset 15677 |
| Copyright terms: Public domain | W3C validator |