| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpr1 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpr1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1002 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 2 | 1 | adantl 277 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 985 |
| This theorem is referenced by: simplr1 1044 simprr1 1050 simp1r1 1098 simp2r1 1104 simp3r1 1110 3anandis 1362 isopolem 5919 caovlem2d 6169 tfrlemibacc 6442 tfrlemibfn 6444 tfr1onlembacc 6458 tfr1onlembfn 6460 tfrcllembacc 6471 tfrcllembfn 6473 eqsupti 7131 prmuloc2 7722 ltntri 8242 elioc2 10100 elico2 10101 elicc2 10102 fseq1p1m1 10258 elfz0ubfz0 10289 ico0 10448 seq3f1olemp 10704 seq3f1oleml 10705 bcval5 10952 swrdsbslen 11164 ccatswrd 11168 isumss2 11870 tanaddap 12216 dvds2ln 12301 divalglemeunn 12398 divalglemex 12399 divalglemeuneg 12400 qredeq 12584 pcdvdstr 12816 isstructr 13013 prdssgrpd 13414 prdsmndd 13447 imasmnd2 13451 mndissubm 13474 grpsubrcan 13580 grpsubadd 13587 grpsubsub 13588 grpaddsubass 13589 grpsubsub4 13592 grpnnncan2 13596 imasgrp2 13613 mulgnndir 13654 mulgnn0dir 13655 mulgdir 13657 mulgnnass 13660 mulgnn0ass 13661 mulgass 13662 mulgsubdir 13665 issubg2m 13692 eqgval 13726 qusgrp 13735 kerf1ghm 13777 cmn32 13807 cmn12 13809 abladdsub 13818 rngass 13868 imasrng 13885 srgass 13900 ringdilem 13941 ringass 13945 imasring 13993 opprrng 14006 opprring 14008 mulgass3 14014 unitgrp 14045 dvrass 14068 dvrdir 14072 subrgunit 14168 issubrg2 14170 aprap 14215 islss3 14308 sralmod 14379 icnpimaex 14850 cnptopresti 14877 upxp 14911 psmettri 14969 isxmet2d 14987 xmettri 15011 metrtri 15016 xmetres2 15018 bldisj 15040 blss2ps 15045 blss2 15046 xmstri2 15109 mstri2 15110 xmstri 15111 mstri 15112 xmstri3 15113 mstri3 15114 msrtri 15115 comet 15138 bdbl 15142 xmetxp 15146 dvconst 15333 dvconstre 15335 dvconstss 15337 sgmmul 15635 findset 16218 |
| Copyright terms: Public domain | W3C validator |