| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpr1 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpr1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
| 2 | 1 | adantl 277 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simplr1 1042 simprr1 1048 simp1r1 1096 simp2r1 1102 simp3r1 1108 3anandis 1360 isopolem 5898 caovlem2d 6146 tfrlemibacc 6419 tfrlemibfn 6421 tfr1onlembacc 6435 tfr1onlembfn 6437 tfrcllembacc 6448 tfrcllembfn 6450 eqsupti 7105 prmuloc2 7687 ltntri 8207 elioc2 10065 elico2 10066 elicc2 10067 fseq1p1m1 10223 elfz0ubfz0 10254 ico0 10411 seq3f1olemp 10667 seq3f1oleml 10668 bcval5 10915 swrdsbslen 11127 ccatswrd 11131 isumss2 11748 tanaddap 12094 dvds2ln 12179 divalglemeunn 12276 divalglemex 12277 divalglemeuneg 12278 qredeq 12462 pcdvdstr 12694 isstructr 12891 prdssgrpd 13291 prdsmndd 13324 imasmnd2 13328 mndissubm 13351 grpsubrcan 13457 grpsubadd 13464 grpsubsub 13465 grpaddsubass 13466 grpsubsub4 13469 grpnnncan2 13473 imasgrp2 13490 mulgnndir 13531 mulgnn0dir 13532 mulgdir 13534 mulgnnass 13537 mulgnn0ass 13538 mulgass 13539 mulgsubdir 13542 issubg2m 13569 eqgval 13603 qusgrp 13612 kerf1ghm 13654 cmn32 13684 cmn12 13686 abladdsub 13695 rngass 13745 imasrng 13762 srgass 13777 ringdilem 13818 ringass 13822 imasring 13870 opprrng 13883 opprring 13885 mulgass3 13891 unitgrp 13922 dvrass 13945 dvrdir 13949 subrgunit 14045 issubrg2 14047 aprap 14092 islss3 14185 sralmod 14256 icnpimaex 14727 cnptopresti 14754 upxp 14788 psmettri 14846 isxmet2d 14864 xmettri 14888 metrtri 14893 xmetres2 14895 bldisj 14917 blss2ps 14922 blss2 14923 xmstri2 14986 mstri2 14987 xmstri 14988 mstri 14989 xmstri3 14990 mstri3 14991 msrtri 14992 comet 15015 bdbl 15019 xmetxp 15023 dvconst 15210 dvconstre 15212 dvconstss 15214 sgmmul 15512 findset 15955 |
| Copyright terms: Public domain | W3C validator |