Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl222anc GIF version

Theorem syl222anc 1186
 Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1 (𝜑𝜓)
sylXanc.2 (𝜑𝜒)
sylXanc.3 (𝜑𝜃)
sylXanc.4 (𝜑𝜏)
sylXanc.5 (𝜑𝜂)
sylXanc.6 (𝜑𝜁)
syl222anc.7 (((𝜓𝜒) ∧ (𝜃𝜏) ∧ (𝜂𝜁)) → 𝜎)
Assertion
Ref Expression
syl222anc (𝜑𝜎)

Proof of Theorem syl222anc
StepHypRef Expression
1 sylXanc.1 . 2 (𝜑𝜓)
2 sylXanc.2 . 2 (𝜑𝜒)
3 sylXanc.3 . 2 (𝜑𝜃)
4 sylXanc.4 . 2 (𝜑𝜏)
5 sylXanc.5 . . 3 (𝜑𝜂)
6 sylXanc.6 . . 3 (𝜑𝜁)
75, 6jca 300 . 2 (𝜑 → (𝜂𝜁))
8 syl222anc.7 . 2 (((𝜓𝜒) ∧ (𝜃𝜏) ∧ (𝜂𝜁)) → 𝜎)
91, 2, 3, 4, 7, 8syl221anc 1181 1 (𝜑𝜎)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   ∧ w3a 920 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106 This theorem depends on definitions:  df-bi 115  df-3an 922 This theorem is referenced by:  3anandis  1279  3anandirs  1280  divdenle  10955
 Copyright terms: Public domain W3C validator