![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpr3 | GIF version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1001 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
2 | 1 | adantl 277 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: simplr3 1043 simprr3 1049 simp1r3 1097 simp2r3 1103 simp3r3 1109 3anandis 1358 isopolem 5866 tfrlemibacc 6381 tfrlemibxssdm 6382 tfrlemibfn 6383 tfr1onlembacc 6397 tfr1onlembxssdm 6398 tfr1onlembfn 6399 tfrcllembacc 6410 tfrcllembxssdm 6411 tfrcllembfn 6412 elfir 7034 prloc 7553 prmuloc2 7629 ltntri 8149 eluzuzle 9603 xlesubadd 9952 elioc2 10005 elico2 10006 elicc2 10007 fseq1p1m1 10163 seq3f1olemp 10589 seq3f1oleml 10590 bcval5 10837 hashdifpr 10894 isumss2 11539 tanaddap 11885 dvds2ln 11970 divalglemeunn 12065 divalglemex 12066 divalglemeuneg 12067 f1ovscpbl 12898 grpsubadd 13163 grpaddsubass 13165 grpsubsub4 13168 grppnpcan2 13169 grpnpncan 13170 grpnnncan2 13172 imasgrp2 13183 imasgrp 13184 mulgnndir 13224 mulgnn0dir 13225 mulgnnass 13230 mulgnn0ass 13231 mulgass 13232 issubg2m 13262 qusgrp 13305 kerf1ghm 13347 cmn32 13377 cmn12 13379 abladdsub 13388 ablsubsub23 13398 rngass 13438 imasrng 13455 srgdilem 13468 srgass 13470 ringdilem 13511 ringass 13515 ringrng 13535 imasring 13563 opprrng 13576 opprring 13578 mulgass3 13584 unitgrp 13615 dvrass 13638 dvrdir 13642 subrgunit 13738 issubrg2 13740 aprap 13785 lss1 13861 lsssn0 13869 islss3 13878 sralmod 13949 restopnb 14360 icnpimaex 14390 cnptopresti 14417 psmettri 14509 isxmet2d 14527 xmettri 14551 metrtri 14556 xmetres2 14558 bldisj 14580 blss2ps 14585 blss2 14586 xmstri2 14649 mstri2 14650 xmstri 14651 mstri 14652 xmstri3 14653 mstri3 14654 msrtri 14655 comet 14678 bdbl 14682 xmetxp 14686 dvconst 14873 dvconstre 14875 dvconstss 14877 |
Copyright terms: Public domain | W3C validator |