| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpr3 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1001 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
| 2 | 1 | adantl 277 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simplr3 1043 simprr3 1049 simp1r3 1097 simp2r3 1103 simp3r3 1109 3anandis 1358 isopolem 5872 tfrlemibacc 6393 tfrlemibxssdm 6394 tfrlemibfn 6395 tfr1onlembacc 6409 tfr1onlembxssdm 6410 tfr1onlembfn 6411 tfrcllembacc 6422 tfrcllembxssdm 6423 tfrcllembfn 6424 elfir 7048 prloc 7577 prmuloc2 7653 ltntri 8173 eluzuzle 9628 xlesubadd 9977 elioc2 10030 elico2 10031 elicc2 10032 fseq1p1m1 10188 seq3f1olemp 10626 seq3f1oleml 10627 bcval5 10874 hashdifpr 10931 isumss2 11577 tanaddap 11923 dvds2ln 12008 divalglemeunn 12105 divalglemex 12106 divalglemeuneg 12107 f1ovscpbl 13016 prdssgrpd 13119 prdsmndd 13152 imasmnd2 13156 imasmnd 13157 grpsubadd 13292 grpaddsubass 13294 grpsubsub4 13297 grppnpcan2 13298 grpnpncan 13299 grpnnncan2 13301 imasgrp2 13318 imasgrp 13319 mulgnndir 13359 mulgnn0dir 13360 mulgnnass 13365 mulgnn0ass 13366 mulgass 13367 issubg2m 13397 qusgrp 13440 kerf1ghm 13482 cmn32 13512 cmn12 13514 abladdsub 13523 ablsubsub23 13533 rngass 13573 imasrng 13590 srgdilem 13603 srgass 13605 ringdilem 13646 ringass 13650 ringrng 13670 imasring 13698 opprrng 13711 opprring 13713 mulgass3 13719 unitgrp 13750 dvrass 13773 dvrdir 13777 subrgunit 13873 issubrg2 13875 aprap 13920 lss1 13996 lsssn0 14004 islss3 14013 sralmod 14084 restopnb 14525 icnpimaex 14555 cnptopresti 14582 psmettri 14674 isxmet2d 14692 xmettri 14716 metrtri 14721 xmetres2 14723 bldisj 14745 blss2ps 14750 blss2 14751 xmstri2 14814 mstri2 14815 xmstri 14816 mstri 14817 xmstri3 14818 mstri3 14819 msrtri 14820 comet 14843 bdbl 14847 xmetxp 14851 dvconst 15038 dvconstre 15040 dvconstss 15042 sgmmul 15340 |
| Copyright terms: Public domain | W3C validator |