| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpr3 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1002 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
| 2 | 1 | adantl 277 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simplr3 1044 simprr3 1050 simp1r3 1098 simp2r3 1104 simp3r3 1110 3anandis 1360 isopolem 5898 tfrlemibacc 6419 tfrlemibxssdm 6420 tfrlemibfn 6421 tfr1onlembacc 6435 tfr1onlembxssdm 6436 tfr1onlembfn 6437 tfrcllembacc 6448 tfrcllembxssdm 6449 tfrcllembfn 6450 elfir 7082 prloc 7611 prmuloc2 7687 ltntri 8207 eluzuzle 9663 xlesubadd 10012 elioc2 10065 elico2 10066 elicc2 10067 fseq1p1m1 10223 seq3f1olemp 10667 seq3f1oleml 10668 bcval5 10915 hashdifpr 10972 ccatswrd 11131 isumss2 11748 tanaddap 12094 dvds2ln 12179 divalglemeunn 12276 divalglemex 12277 divalglemeuneg 12278 f1ovscpbl 13188 prdssgrpd 13291 prdsmndd 13324 imasmnd2 13328 imasmnd 13329 grpsubadd 13464 grpaddsubass 13466 grpsubsub4 13469 grppnpcan2 13470 grpnpncan 13471 grpnnncan2 13473 imasgrp2 13490 imasgrp 13491 mulgnndir 13531 mulgnn0dir 13532 mulgnnass 13537 mulgnn0ass 13538 mulgass 13539 issubg2m 13569 qusgrp 13612 kerf1ghm 13654 cmn32 13684 cmn12 13686 abladdsub 13695 ablsubsub23 13705 rngass 13745 imasrng 13762 srgdilem 13775 srgass 13777 ringdilem 13818 ringass 13822 ringrng 13842 imasring 13870 opprrng 13883 opprring 13885 mulgass3 13891 unitgrp 13922 dvrass 13945 dvrdir 13949 subrgunit 14045 issubrg2 14047 aprap 14092 lss1 14168 lsssn0 14176 islss3 14185 sralmod 14256 restopnb 14697 icnpimaex 14727 cnptopresti 14754 psmettri 14846 isxmet2d 14864 xmettri 14888 metrtri 14893 xmetres2 14895 bldisj 14917 blss2ps 14922 blss2 14923 xmstri2 14986 mstri2 14987 xmstri 14988 mstri 14989 xmstri3 14990 mstri3 14991 msrtri 14992 comet 15015 bdbl 15019 xmetxp 15023 dvconst 15210 dvconstre 15212 dvconstss 15214 sgmmul 15512 |
| Copyright terms: Public domain | W3C validator |