Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simpr3 | GIF version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 989 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
2 | 1 | adantl 275 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: simplr3 1031 simprr3 1037 simp1r3 1085 simp2r3 1091 simp3r3 1097 3anandis 1337 isopolem 5790 tfrlemibacc 6294 tfrlemibxssdm 6295 tfrlemibfn 6296 tfr1onlembacc 6310 tfr1onlembxssdm 6311 tfr1onlembfn 6312 tfrcllembacc 6323 tfrcllembxssdm 6324 tfrcllembfn 6325 elfir 6938 prloc 7432 prmuloc2 7508 ltntri 8026 eluzuzle 9474 xlesubadd 9819 elioc2 9872 elico2 9873 elicc2 9874 fseq1p1m1 10029 seq3f1olemp 10437 seq3f1oleml 10438 bcval5 10676 hashdifpr 10733 isumss2 11334 tanaddap 11680 dvds2ln 11764 divalglemeunn 11858 divalglemex 11859 divalglemeuneg 11860 restopnb 12821 icnpimaex 12851 cnptopresti 12878 psmettri 12970 isxmet2d 12988 xmettri 13012 metrtri 13017 xmetres2 13019 bldisj 13041 blss2ps 13046 blss2 13047 xmstri2 13110 mstri2 13111 xmstri 13112 mstri 13113 xmstri3 13114 mstri3 13115 msrtri 13116 comet 13139 bdbl 13143 xmetxp 13147 dvconst 13301 |
Copyright terms: Public domain | W3C validator |