![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpr3 | GIF version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1001 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
2 | 1 | adantl 277 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: simplr3 1043 simprr3 1049 simp1r3 1097 simp2r3 1103 simp3r3 1109 3anandis 1358 isopolem 5865 tfrlemibacc 6379 tfrlemibxssdm 6380 tfrlemibfn 6381 tfr1onlembacc 6395 tfr1onlembxssdm 6396 tfr1onlembfn 6397 tfrcllembacc 6408 tfrcllembxssdm 6409 tfrcllembfn 6410 elfir 7032 prloc 7551 prmuloc2 7627 ltntri 8147 eluzuzle 9600 xlesubadd 9949 elioc2 10002 elico2 10003 elicc2 10004 fseq1p1m1 10160 seq3f1olemp 10586 seq3f1oleml 10587 bcval5 10834 hashdifpr 10891 isumss2 11536 tanaddap 11882 dvds2ln 11967 divalglemeunn 12062 divalglemex 12063 divalglemeuneg 12064 f1ovscpbl 12895 grpsubadd 13160 grpaddsubass 13162 grpsubsub4 13165 grppnpcan2 13166 grpnpncan 13167 grpnnncan2 13169 imasgrp2 13180 imasgrp 13181 mulgnndir 13221 mulgnn0dir 13222 mulgnnass 13227 mulgnn0ass 13228 mulgass 13229 issubg2m 13259 qusgrp 13302 kerf1ghm 13344 cmn32 13374 cmn12 13376 abladdsub 13385 ablsubsub23 13395 rngass 13435 imasrng 13452 srgdilem 13465 srgass 13467 ringdilem 13508 ringass 13512 ringrng 13532 imasring 13560 opprrng 13573 opprring 13575 mulgass3 13581 unitgrp 13612 dvrass 13635 dvrdir 13639 subrgunit 13735 issubrg2 13737 aprap 13782 lss1 13858 lsssn0 13866 islss3 13875 sralmod 13946 restopnb 14349 icnpimaex 14379 cnptopresti 14406 psmettri 14498 isxmet2d 14516 xmettri 14540 metrtri 14545 xmetres2 14547 bldisj 14569 blss2ps 14574 blss2 14575 xmstri2 14638 mstri2 14639 xmstri 14640 mstri 14641 xmstri3 14642 mstri3 14643 msrtri 14644 comet 14667 bdbl 14671 xmetxp 14675 dvconst 14846 |
Copyright terms: Public domain | W3C validator |