| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpr3 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1004 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜃) | |
| 2 | 1 | adantl 277 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 985 |
| This theorem is referenced by: simplr3 1046 simprr3 1052 simp1r3 1100 simp2r3 1106 simp3r3 1112 3anandis 1362 isopolem 5919 tfrlemibacc 6442 tfrlemibxssdm 6443 tfrlemibfn 6444 tfr1onlembacc 6458 tfr1onlembxssdm 6459 tfr1onlembfn 6460 tfrcllembacc 6471 tfrcllembxssdm 6472 tfrcllembfn 6473 elfir 7108 prloc 7646 prmuloc2 7722 ltntri 8242 eluzuzle 9698 xlesubadd 10047 elioc2 10100 elico2 10101 elicc2 10102 fseq1p1m1 10258 seq3f1olemp 10704 seq3f1oleml 10705 bcval5 10952 hashdifpr 11009 ccatswrd 11168 pfxccat3a 11236 isumss2 11870 tanaddap 12216 dvds2ln 12301 divalglemeunn 12398 divalglemex 12399 divalglemeuneg 12400 f1ovscpbl 13311 prdssgrpd 13414 prdsmndd 13447 imasmnd2 13451 imasmnd 13452 grpsubadd 13587 grpaddsubass 13589 grpsubsub4 13592 grppnpcan2 13593 grpnpncan 13594 grpnnncan2 13596 imasgrp2 13613 imasgrp 13614 mulgnndir 13654 mulgnn0dir 13655 mulgnnass 13660 mulgnn0ass 13661 mulgass 13662 issubg2m 13692 qusgrp 13735 kerf1ghm 13777 cmn32 13807 cmn12 13809 abladdsub 13818 ablsubsub23 13828 rngass 13868 imasrng 13885 srgdilem 13898 srgass 13900 ringdilem 13941 ringass 13945 ringrng 13965 imasring 13993 opprrng 14006 opprring 14008 mulgass3 14014 unitgrp 14045 dvrass 14068 dvrdir 14072 subrgunit 14168 issubrg2 14170 aprap 14215 lss1 14291 lsssn0 14299 islss3 14308 sralmod 14379 restopnb 14820 icnpimaex 14850 cnptopresti 14877 psmettri 14969 isxmet2d 14987 xmettri 15011 metrtri 15016 xmetres2 15018 bldisj 15040 blss2ps 15045 blss2 15046 xmstri2 15109 mstri2 15110 xmstri 15111 mstri 15112 xmstri3 15113 mstri3 15114 msrtri 15115 comet 15138 bdbl 15142 xmetxp 15146 dvconst 15333 dvconstre 15335 dvconstss 15337 sgmmul 15635 |
| Copyright terms: Public domain | W3C validator |