ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimp3ar GIF version

Theorem biimp3ar 1328
Description: Infer implication from a logical equivalence. Similar to biimpar 295. (Contributed by NM, 2-Jan-2009.)
Hypothesis
Ref Expression
biimp3a.1 ((𝜑𝜓) → (𝜒𝜃))
Assertion
Ref Expression
biimp3ar ((𝜑𝜓𝜃) → 𝜒)

Proof of Theorem biimp3ar
StepHypRef Expression
1 biimp3a.1 . . 3 ((𝜑𝜓) → (𝜒𝜃))
21exbiri 380 . 2 (𝜑 → (𝜓 → (𝜃𝜒)))
323imp 1176 1 ((𝜑𝜓𝜃) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 965
This theorem is referenced by:  rmoi  3030  brelrng  4819  ssfzo12  10132  abssubge0  11013  qredeu  11989  basgen2  12551  logbprmirr  13360
  Copyright terms: Public domain W3C validator