| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3anbi123i | GIF version | ||
| Description: Join 3 biconditionals with conjunction. (Contributed by NM, 21-Apr-1994.) | 
| Ref | Expression | 
|---|---|
| bi3.1 | ⊢ (𝜑 ↔ 𝜓) | 
| bi3.2 | ⊢ (𝜒 ↔ 𝜃) | 
| bi3.3 | ⊢ (𝜏 ↔ 𝜂) | 
| Ref | Expression | 
|---|---|
| 3anbi123i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ (𝜓 ∧ 𝜃 ∧ 𝜂)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bi3.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | bi3.2 | . . . 4 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | 1, 2 | anbi12i 460 | . . 3 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) | 
| 4 | bi3.3 | . . 3 ⊢ (𝜏 ↔ 𝜂) | |
| 5 | 3, 4 | anbi12i 460 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜏) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) | 
| 6 | df-3an 982 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜏)) | |
| 7 | df-3an 982 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) | |
| 8 | 5, 6, 7 | 3bitr4i 212 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ (𝜓 ∧ 𝜃 ∧ 𝜂)) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: 3anbi1i 1192 3anbi2i 1193 3anbi3i 1194 syl3anb 1292 ne3anior 2455 isstructim 12692 | 
| Copyright terms: Public domain | W3C validator |