ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anbi3i GIF version

Theorem 3anbi3i 1175
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1i.1 (𝜑𝜓)
Assertion
Ref Expression
3anbi3i ((𝜒𝜃𝜑) ↔ (𝜒𝜃𝜓))

Proof of Theorem 3anbi3i
StepHypRef Expression
1 biid 170 . 2 (𝜒𝜒)
2 biid 170 . 2 (𝜃𝜃)
3 3anbi1i.1 . 2 (𝜑𝜓)
41, 2, 33anbi123i 1171 1 ((𝜒𝜃𝜑) ↔ (𝜒𝜃𝜓))
Colors of variables: wff set class
Syntax hints:  wb 104  w3a 963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 965
This theorem is referenced by:  dfer2  6482  cbvsum  11261
  Copyright terms: Public domain W3C validator