| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3anbi3i | GIF version | ||
| Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) | 
| Ref | Expression | 
|---|---|
| 3anbi1i.1 | ⊢ (𝜑 ↔ 𝜓) | 
| Ref | Expression | 
|---|---|
| 3anbi3i | ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) ↔ (𝜒 ∧ 𝜃 ∧ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biid 171 | . 2 ⊢ (𝜒 ↔ 𝜒) | |
| 2 | biid 171 | . 2 ⊢ (𝜃 ↔ 𝜃) | |
| 3 | 3anbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 4 | 1, 2, 3 | 3anbi123i 1190 | 1 ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜑) ↔ (𝜒 ∧ 𝜃 ∧ 𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: dfer2 6593 cbvsum 11525 | 
| Copyright terms: Public domain | W3C validator |