ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anbi2i GIF version

Theorem 3anbi2i 1191
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1i.1 (𝜑𝜓)
Assertion
Ref Expression
3anbi2i ((𝜒𝜑𝜃) ↔ (𝜒𝜓𝜃))

Proof of Theorem 3anbi2i
StepHypRef Expression
1 biid 171 . 2 (𝜒𝜒)
2 3anbi1i.1 . 2 (𝜑𝜓)
3 biid 171 . 2 (𝜃𝜃)
41, 2, 33anbi123i 1188 1 ((𝜒𝜑𝜃) ↔ (𝜒𝜓𝜃))
Colors of variables: wff set class
Syntax hints:  wb 105  w3a 978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by:  seq3f1olemp  10505  seq3f1oleml  10506  fsum3  11398  issubg2m  13055
  Copyright terms: Public domain W3C validator