![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isstructim | GIF version |
Description: The property of being a structure with components in 𝑀...𝑁. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.) |
Ref | Expression |
---|---|
isstructim | ⊢ (𝐹 Struct 〈𝑀, 𝑁〉 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝑀...𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isstruct2im 12602 | . 2 ⊢ (𝐹 Struct 〈𝑀, 𝑁〉 → (〈𝑀, 𝑁〉 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘〈𝑀, 𝑁〉))) | |
2 | brinxp2 4718 | . . . 4 ⊢ (𝑀( ≤ ∩ (ℕ × ℕ))𝑁 ↔ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁)) | |
3 | df-br 4026 | . . . 4 ⊢ (𝑀( ≤ ∩ (ℕ × ℕ))𝑁 ↔ 〈𝑀, 𝑁〉 ∈ ( ≤ ∩ (ℕ × ℕ))) | |
4 | 2, 3 | bitr3i 186 | . . 3 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ↔ 〈𝑀, 𝑁〉 ∈ ( ≤ ∩ (ℕ × ℕ))) |
5 | biid 171 | . . 3 ⊢ (Fun (𝐹 ∖ {∅}) ↔ Fun (𝐹 ∖ {∅})) | |
6 | df-ov 5909 | . . . 4 ⊢ (𝑀...𝑁) = (...‘〈𝑀, 𝑁〉) | |
7 | 6 | sseq2i 3202 | . . 3 ⊢ (dom 𝐹 ⊆ (𝑀...𝑁) ↔ dom 𝐹 ⊆ (...‘〈𝑀, 𝑁〉)) |
8 | 4, 5, 7 | 3anbi123i 1190 | . 2 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝑀...𝑁)) ↔ (〈𝑀, 𝑁〉 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘〈𝑀, 𝑁〉))) |
9 | 1, 8 | sylibr 134 | 1 ⊢ (𝐹 Struct 〈𝑀, 𝑁〉 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝑀...𝑁))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 ∈ wcel 2160 ∖ cdif 3146 ∩ cin 3148 ⊆ wss 3149 ∅c0 3442 {csn 3614 〈cop 3617 class class class wbr 4025 × cxp 4649 dom cdm 4651 Fun wfun 5236 ‘cfv 5242 (class class class)co 5906 ≤ cle 8041 ℕcn 8968 ...cfz 10060 Struct cstr 12588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4143 ax-pow 4199 ax-pr 4234 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2758 df-dif 3151 df-un 3153 df-in 3155 df-ss 3162 df-pw 3599 df-sn 3620 df-pr 3621 df-op 3623 df-uni 3832 df-br 4026 df-opab 4087 df-xp 4657 df-rel 4658 df-cnv 4659 df-co 4660 df-dm 4661 df-iota 5203 df-fun 5244 df-fv 5250 df-ov 5909 df-struct 12594 |
This theorem is referenced by: structfn 12611 strsetsid 12625 strleund 12695 strleun 12696 strext 12697 |
Copyright terms: Public domain | W3C validator |