ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isstructim GIF version

Theorem isstructim 13041
Description: The property of being a structure with components in 𝑀...𝑁. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.)
Assertion
Ref Expression
isstructim (𝐹 Struct ⟨𝑀, 𝑁⟩ → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝑀...𝑁)))

Proof of Theorem isstructim
StepHypRef Expression
1 isstruct2im 13037 . 2 (𝐹 Struct ⟨𝑀, 𝑁⟩ → (⟨𝑀, 𝑁⟩ ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘⟨𝑀, 𝑁⟩)))
2 brinxp2 4785 . . . 4 (𝑀( ≤ ∩ (ℕ × ℕ))𝑁 ↔ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁))
3 df-br 4083 . . . 4 (𝑀( ≤ ∩ (ℕ × ℕ))𝑁 ↔ ⟨𝑀, 𝑁⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))
42, 3bitr3i 186 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ↔ ⟨𝑀, 𝑁⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))
5 biid 171 . . 3 (Fun (𝐹 ∖ {∅}) ↔ Fun (𝐹 ∖ {∅}))
6 df-ov 6003 . . . 4 (𝑀...𝑁) = (...‘⟨𝑀, 𝑁⟩)
76sseq2i 3251 . . 3 (dom 𝐹 ⊆ (𝑀...𝑁) ↔ dom 𝐹 ⊆ (...‘⟨𝑀, 𝑁⟩))
84, 5, 73anbi123i 1212 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝑀...𝑁)) ↔ (⟨𝑀, 𝑁⟩ ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘⟨𝑀, 𝑁⟩)))
91, 8sylibr 134 1 (𝐹 Struct ⟨𝑀, 𝑁⟩ → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝑀...𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 1002  wcel 2200  cdif 3194  cin 3196  wss 3197  c0 3491  {csn 3666  cop 3669   class class class wbr 4082   × cxp 4716  dom cdm 4718  Fun wfun 5311  cfv 5317  (class class class)co 6000  cle 8178  cn 9106  ...cfz 10200   Struct cstr 13023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-ov 6003  df-struct 13029
This theorem is referenced by:  structfn  13046  strsetsid  13060  strleund  13131  strleun  13132  strext  13133
  Copyright terms: Public domain W3C validator