ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isstructim GIF version

Theorem isstructim 12012
Description: The property of being a structure with components in 𝑀...𝑁. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.)
Assertion
Ref Expression
isstructim (𝐹 Struct ⟨𝑀, 𝑁⟩ → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝑀...𝑁)))

Proof of Theorem isstructim
StepHypRef Expression
1 isstruct2im 12008 . 2 (𝐹 Struct ⟨𝑀, 𝑁⟩ → (⟨𝑀, 𝑁⟩ ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘⟨𝑀, 𝑁⟩)))
2 brinxp2 4614 . . . 4 (𝑀( ≤ ∩ (ℕ × ℕ))𝑁 ↔ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁))
3 df-br 3938 . . . 4 (𝑀( ≤ ∩ (ℕ × ℕ))𝑁 ↔ ⟨𝑀, 𝑁⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))
42, 3bitr3i 185 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ↔ ⟨𝑀, 𝑁⟩ ∈ ( ≤ ∩ (ℕ × ℕ)))
5 biid 170 . . 3 (Fun (𝐹 ∖ {∅}) ↔ Fun (𝐹 ∖ {∅}))
6 df-ov 5785 . . . 4 (𝑀...𝑁) = (...‘⟨𝑀, 𝑁⟩)
76sseq2i 3129 . . 3 (dom 𝐹 ⊆ (𝑀...𝑁) ↔ dom 𝐹 ⊆ (...‘⟨𝑀, 𝑁⟩))
84, 5, 73anbi123i 1171 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝑀...𝑁)) ↔ (⟨𝑀, 𝑁⟩ ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘⟨𝑀, 𝑁⟩)))
91, 8sylibr 133 1 (𝐹 Struct ⟨𝑀, 𝑁⟩ → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝑀...𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 963  wcel 1481  cdif 3073  cin 3075  wss 3076  c0 3368  {csn 3532  cop 3535   class class class wbr 3937   × cxp 4545  dom cdm 4547  Fun wfun 5125  cfv 5131  (class class class)co 5782  cle 7825  cn 8744  ...cfz 9821   Struct cstr 11994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-ov 5785  df-struct 12000
This theorem is referenced by:  structfn  12017  strsetsid  12031  strleund  12086  strleun  12087
  Copyright terms: Public domain W3C validator