| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biid | GIF version | ||
| Description: Principle of identity for logical equivalence. Theorem *4.2 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| biid | ⊢ (𝜑 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | 1, 1 | impbii 126 | 1 ⊢ (𝜑 ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biidd 172 an21 471 3anbi1i 1214 3anbi2i 1215 3anbi3i 1216 trubitru 1457 falbifal 1460 eqid 2229 abid2 2350 abid2f 2398 ceqsexg 2931 nnwetri 7074 isacnm 7381 exmidontriimlem3 7401 fsum2d 11941 fprod2d 12129 isstructim 13041 lmodvscl 14263 lgsquad2 15756 |
| Copyright terms: Public domain | W3C validator |