| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biid | GIF version | ||
| Description: Principle of identity for logical equivalence. Theorem *4.2 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| biid | ⊢ (𝜑 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | 1, 1 | impbii 126 | 1 ⊢ (𝜑 ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biidd 172 an21 471 3anbi1i 1192 3anbi2i 1193 3anbi3i 1194 trubitru 1434 falbifal 1437 eqid 2204 abid2 2325 abid2f 2373 ceqsexg 2900 nnwetri 7012 isacnm 7314 exmidontriimlem3 7334 fsum2d 11688 fprod2d 11876 isstructim 12788 lmodvscl 14009 lgsquad2 15502 |
| Copyright terms: Public domain | W3C validator |