Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biid | GIF version |
Description: Principle of identity for logical equivalence. Theorem *4.2 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
biid | ⊢ (𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | 1, 1 | impbii 125 | 1 ⊢ (𝜑 ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biidd 171 3anbi1i 1180 3anbi2i 1181 3anbi3i 1182 trubitru 1405 falbifal 1408 eqid 2165 abid2 2287 abid2f 2334 ceqsexg 2854 nnwetri 6881 exmidontriimlem3 7179 fsum2d 11376 fprod2d 11564 isstructim 12408 |
Copyright terms: Public domain | W3C validator |