Step | Hyp | Ref
| Expression |
1 | | cbvsum.4 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘𝐵 |
2 | | cbvsum.5 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗𝐶 |
3 | | cbvsum.1 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑘 → 𝐵 = 𝐶) |
4 | 1, 2, 3 | cbvcsb 3050 |
. . . . . . . . . 10
⊢
⦋𝑛 /
𝑗⦌𝐵 = ⦋𝑛 / 𝑘⦌𝐶 |
5 | | ifeq1 3523 |
. . . . . . . . . 10
⊢
(⦋𝑛 /
𝑗⦌𝐵 = ⦋𝑛 / 𝑘⦌𝐶 → if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑗⦌𝐵, 0) = if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)) |
6 | 4, 5 | ax-mp 5 |
. . . . . . . . 9
⊢ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑗⦌𝐵, 0) = if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0) |
7 | 6 | mpteq2i 4069 |
. . . . . . . 8
⊢ (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑗⦌𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)) |
8 | | seqeq3 10385 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑗⦌𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)) → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑗⦌𝐵, 0))) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0)))) |
9 | 7, 8 | ax-mp 5 |
. . . . . . 7
⊢ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑗⦌𝐵, 0))) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) |
10 | 9 | breq1i 3989 |
. . . . . 6
⊢ (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑗⦌𝐵, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥) |
11 | 10 | 3anbi3i 1182 |
. . . . 5
⊢ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑢 ∈ (ℤ≥‘𝑚)DECID 𝑢 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑗⦌𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑢 ∈
(ℤ≥‘𝑚)DECID 𝑢 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥)) |
12 | 11 | rexbii 2473 |
. . . 4
⊢
(∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑢 ∈ (ℤ≥‘𝑚)DECID 𝑢 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑗⦌𝐵, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑢 ∈
(ℤ≥‘𝑚)DECID 𝑢 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥)) |
13 | 1, 2, 3 | cbvcsb 3050 |
. . . . . . . . . . . 12
⊢
⦋(𝑓‘𝑛) / 𝑗⦌𝐵 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐶 |
14 | | ifeq1 3523 |
. . . . . . . . . . . 12
⊢
(⦋(𝑓‘𝑛) / 𝑗⦌𝐵 = ⦋(𝑓‘𝑛) / 𝑘⦌𝐶 → if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑗⦌𝐵, 0) = if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)) |
15 | 13, 14 | ax-mp 5 |
. . . . . . . . . . 11
⊢ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑗⦌𝐵, 0) = if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0) |
16 | 15 | mpteq2i 4069 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑗⦌𝐵, 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)) |
17 | | seqeq3 10385 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑗⦌𝐵, 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)) → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑗⦌𝐵, 0))) = seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)))) |
18 | 16, 17 | ax-mp 5 |
. . . . . . . . 9
⊢ seq1( + ,
(𝑛 ∈ ℕ ↦
if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑗⦌𝐵, 0))) = seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0))) |
19 | 18 | fveq1i 5487 |
. . . . . . . 8
⊢ (seq1( +
, (𝑛 ∈ ℕ ↦
if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑗⦌𝐵, 0)))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)))‘𝑚) |
20 | 19 | eqeq2i 2176 |
. . . . . . 7
⊢ (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑗⦌𝐵, 0)))‘𝑚) ↔ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)))‘𝑚)) |
21 | 20 | anbi2i 453 |
. . . . . 6
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑗⦌𝐵, 0)))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)))‘𝑚))) |
22 | 21 | exbii 1593 |
. . . . 5
⊢
(∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑗⦌𝐵, 0)))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)))‘𝑚))) |
23 | 22 | rexbii 2473 |
. . . 4
⊢
(∃𝑚 ∈
ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑗⦌𝐵, 0)))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)))‘𝑚))) |
24 | 12, 23 | orbi12i 754 |
. . 3
⊢
((∃𝑚 ∈
ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∀𝑢 ∈ (ℤ≥‘𝑚)DECID 𝑢 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑗⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑗⦌𝐵, 0)))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑢 ∈
(ℤ≥‘𝑚)DECID 𝑢 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)))‘𝑚)))) |
25 | 24 | iotabii 5175 |
. 2
⊢
(℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑢 ∈
(ℤ≥‘𝑚)DECID 𝑢 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑗⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑗⦌𝐵, 0)))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑢 ∈
(ℤ≥‘𝑚)DECID 𝑢 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)))‘𝑚)))) |
26 | | df-sumdc 11295 |
. 2
⊢
Σ𝑗 ∈
𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑢 ∈
(ℤ≥‘𝑚)DECID 𝑢 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑗⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑗⦌𝐵, 0)))‘𝑚)))) |
27 | | df-sumdc 11295 |
. 2
⊢
Σ𝑘 ∈
𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∀𝑢 ∈
(ℤ≥‘𝑚)DECID 𝑢 ∈ 𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑚, ⦋(𝑓‘𝑛) / 𝑘⦌𝐶, 0)))‘𝑚)))) |
28 | 25, 26, 27 | 3eqtr4i 2196 |
1
⊢
Σ𝑗 ∈
𝐴 𝐵 = Σ𝑘 ∈ 𝐴 𝐶 |