ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvsum GIF version

Theorem cbvsum 11542
Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Hypotheses
Ref Expression
cbvsum.1 (𝑗 = 𝑘𝐵 = 𝐶)
cbvsum.2 𝑘𝐴
cbvsum.3 𝑗𝐴
cbvsum.4 𝑘𝐵
cbvsum.5 𝑗𝐶
Assertion
Ref Expression
cbvsum Σ𝑗𝐴 𝐵 = Σ𝑘𝐴 𝐶

Proof of Theorem cbvsum
Dummy variables 𝑓 𝑚 𝑛 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cbvsum.4 . . . . . . . . . . 11 𝑘𝐵
2 cbvsum.5 . . . . . . . . . . 11 𝑗𝐶
3 cbvsum.1 . . . . . . . . . . 11 (𝑗 = 𝑘𝐵 = 𝐶)
41, 2, 3cbvcsb 3089 . . . . . . . . . 10 𝑛 / 𝑗𝐵 = 𝑛 / 𝑘𝐶
5 ifeq1 3565 . . . . . . . . . 10 (𝑛 / 𝑗𝐵 = 𝑛 / 𝑘𝐶 → if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0) = if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))
64, 5ax-mp 5 . . . . . . . . 9 if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0) = if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0)
76mpteq2i 4121 . . . . . . . 8 (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))
8 seqeq3 10561 . . . . . . . 8 ((𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0)) → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))))
97, 8ax-mp 5 . . . . . . 7 seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0)))
109breq1i 4041 . . . . . 6 (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥)
11103anbi3i 1194 . . . . 5 ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑢 ∈ (ℤ𝑚)DECID 𝑢𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑢 ∈ (ℤ𝑚)DECID 𝑢𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥))
1211rexbii 2504 . . . 4 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑢 ∈ (ℤ𝑚)DECID 𝑢𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑢 ∈ (ℤ𝑚)DECID 𝑢𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥))
131, 2, 3cbvcsb 3089 . . . . . . . . . . . 12 (𝑓𝑛) / 𝑗𝐵 = (𝑓𝑛) / 𝑘𝐶
14 ifeq1 3565 . . . . . . . . . . . 12 ((𝑓𝑛) / 𝑗𝐵 = (𝑓𝑛) / 𝑘𝐶 → if(𝑛𝑚, (𝑓𝑛) / 𝑗𝐵, 0) = if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0))
1513, 14ax-mp 5 . . . . . . . . . . 11 if(𝑛𝑚, (𝑓𝑛) / 𝑗𝐵, 0) = if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)
1615mpteq2i 4121 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑗𝐵, 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0))
17 seqeq3 10561 . . . . . . . . . 10 ((𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑗𝐵, 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)) → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑗𝐵, 0))) = seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0))))
1816, 17ax-mp 5 . . . . . . . . 9 seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑗𝐵, 0))) = seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))
1918fveq1i 5562 . . . . . . . 8 (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑗𝐵, 0)))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)
2019eqeq2i 2207 . . . . . . 7 (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑗𝐵, 0)))‘𝑚) ↔ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))
2120anbi2i 457 . . . . . 6 ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑗𝐵, 0)))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)))
2221exbii 1619 . . . . 5 (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑗𝐵, 0)))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)))
2322rexbii 2504 . . . 4 (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑗𝐵, 0)))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)))
2412, 23orbi12i 765 . . 3 ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑢 ∈ (ℤ𝑚)DECID 𝑢𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑗𝐵, 0)))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑢 ∈ (ℤ𝑚)DECID 𝑢𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
2524iotabii 5243 . 2 (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑢 ∈ (ℤ𝑚)DECID 𝑢𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑗𝐵, 0)))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑢 ∈ (ℤ𝑚)DECID 𝑢𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
26 df-sumdc 11536 . 2 Σ𝑗𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑢 ∈ (ℤ𝑚)DECID 𝑢𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑗𝐵, 0)))‘𝑚))))
27 df-sumdc 11536 . 2 Σ𝑘𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑢 ∈ (ℤ𝑚)DECID 𝑢𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
2825, 26, 273eqtr4i 2227 1 Σ𝑗𝐴 𝐵 = Σ𝑘𝐴 𝐶
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wex 1506  wcel 2167  wnfc 2326  wral 2475  wrex 2476  csb 3084  wss 3157  ifcif 3562   class class class wbr 4034  cmpt 4095  cio 5218  1-1-ontowf1o 5258  cfv 5259  (class class class)co 5925  0cc0 7896  1c1 7897   + caddc 7899  cle 8079  cn 9007  cz 9343  cuz 9618  ...cfz 10100  seqcseq 10556  cli 11460  Σcsu 11535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-if 3563  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-cnv 4672  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-recs 6372  df-frec 6458  df-seqfrec 10557  df-sumdc 11536
This theorem is referenced by:  cbvsumv  11543  cbvsumi  11544  fsumsplitf  11590
  Copyright terms: Public domain W3C validator