ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvsum GIF version

Theorem cbvsum 11370
Description: Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
Hypotheses
Ref Expression
cbvsum.1 (𝑗 = 𝑘𝐵 = 𝐶)
cbvsum.2 𝑘𝐴
cbvsum.3 𝑗𝐴
cbvsum.4 𝑘𝐵
cbvsum.5 𝑗𝐶
Assertion
Ref Expression
cbvsum Σ𝑗𝐴 𝐵 = Σ𝑘𝐴 𝐶

Proof of Theorem cbvsum
Dummy variables 𝑓 𝑚 𝑛 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cbvsum.4 . . . . . . . . . . 11 𝑘𝐵
2 cbvsum.5 . . . . . . . . . . 11 𝑗𝐶
3 cbvsum.1 . . . . . . . . . . 11 (𝑗 = 𝑘𝐵 = 𝐶)
41, 2, 3cbvcsb 3064 . . . . . . . . . 10 𝑛 / 𝑗𝐵 = 𝑛 / 𝑘𝐶
5 ifeq1 3539 . . . . . . . . . 10 (𝑛 / 𝑗𝐵 = 𝑛 / 𝑘𝐶 → if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0) = if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))
64, 5ax-mp 5 . . . . . . . . 9 if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0) = if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0)
76mpteq2i 4092 . . . . . . . 8 (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))
8 seqeq3 10452 . . . . . . . 8 ((𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0)) = (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0)) → seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))))
97, 8ax-mp 5 . . . . . . 7 seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) = seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0)))
109breq1i 4012 . . . . . 6 (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥)
11103anbi3i 1192 . . . . 5 ((𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑢 ∈ (ℤ𝑚)DECID 𝑢𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑢 ∈ (ℤ𝑚)DECID 𝑢𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥))
1211rexbii 2484 . . . 4 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑢 ∈ (ℤ𝑚)DECID 𝑢𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑢 ∈ (ℤ𝑚)DECID 𝑢𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥))
131, 2, 3cbvcsb 3064 . . . . . . . . . . . 12 (𝑓𝑛) / 𝑗𝐵 = (𝑓𝑛) / 𝑘𝐶
14 ifeq1 3539 . . . . . . . . . . . 12 ((𝑓𝑛) / 𝑗𝐵 = (𝑓𝑛) / 𝑘𝐶 → if(𝑛𝑚, (𝑓𝑛) / 𝑗𝐵, 0) = if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0))
1513, 14ax-mp 5 . . . . . . . . . . 11 if(𝑛𝑚, (𝑓𝑛) / 𝑗𝐵, 0) = if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)
1615mpteq2i 4092 . . . . . . . . . 10 (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑗𝐵, 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0))
17 seqeq3 10452 . . . . . . . . . 10 ((𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑗𝐵, 0)) = (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)) → seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑗𝐵, 0))) = seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0))))
1816, 17ax-mp 5 . . . . . . . . 9 seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑗𝐵, 0))) = seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))
1918fveq1i 5518 . . . . . . . 8 (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑗𝐵, 0)))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)
2019eqeq2i 2188 . . . . . . 7 (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑗𝐵, 0)))‘𝑚) ↔ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))
2120anbi2i 457 . . . . . 6 ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑗𝐵, 0)))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)))
2221exbii 1605 . . . . 5 (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑗𝐵, 0)))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)))
2322rexbii 2484 . . . 4 (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑗𝐵, 0)))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚)))
2412, 23orbi12i 764 . . 3 ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑢 ∈ (ℤ𝑚)DECID 𝑢𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑗𝐵, 0)))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑢 ∈ (ℤ𝑚)DECID 𝑢𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
2524iotabii 5202 . 2 (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑢 ∈ (ℤ𝑚)DECID 𝑢𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑗𝐵, 0)))‘𝑚)))) = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑢 ∈ (ℤ𝑚)DECID 𝑢𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
26 df-sumdc 11364 . 2 Σ𝑗𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑢 ∈ (ℤ𝑚)DECID 𝑢𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑗𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑗𝐵, 0)))‘𝑚))))
27 df-sumdc 11364 . 2 Σ𝑘𝐴 𝐶 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑢 ∈ (ℤ𝑚)DECID 𝑢𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐶, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐶, 0)))‘𝑚))))
2825, 26, 273eqtr4i 2208 1 Σ𝑗𝐴 𝐵 = Σ𝑘𝐴 𝐶
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 708  DECID wdc 834  w3a 978   = wceq 1353  wex 1492  wcel 2148  wnfc 2306  wral 2455  wrex 2456  csb 3059  wss 3131  ifcif 3536   class class class wbr 4005  cmpt 4066  cio 5178  1-1-ontowf1o 5217  cfv 5218  (class class class)co 5877  0cc0 7813  1c1 7814   + caddc 7816  cle 7995  cn 8921  cz 9255  cuz 9530  ...cfz 10010  seqcseq 10447  cli 11288  Σcsu 11363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-if 3537  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-cnv 4636  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-recs 6308  df-frec 6394  df-seqfrec 10448  df-sumdc 11364
This theorem is referenced by:  cbvsumv  11371  cbvsumi  11372  fsumsplitf  11418
  Copyright terms: Public domain W3C validator