Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcco | GIF version |
Description: A composition law for class substitution. (Contributed by NM, 26-Sep-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
sbcco | ⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 2959 | . 2 ⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 → 𝐴 ∈ V) | |
2 | sbcex 2959 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | |
3 | dfsbcq 2953 | . . 3 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑦][𝑦 / 𝑥]𝜑)) | |
4 | dfsbcq 2953 | . . 3 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
5 | sbsbc 2955 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | |
6 | 5 | sbbii 1753 | . . . . 5 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑) |
7 | nfv 1516 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
8 | 7 | sbco2 1953 | . . . . 5 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) |
9 | sbsbc 2955 | . . . . 5 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑) | |
10 | 6, 8, 9 | 3bitr3ri 210 | . . . 4 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) |
11 | sbsbc 2955 | . . . 4 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) | |
12 | 10, 11 | bitri 183 | . . 3 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) |
13 | 3, 4, 12 | vtoclbg 2787 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
14 | 1, 2, 13 | pm5.21nii 694 | 1 ⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 [wsb 1750 ∈ wcel 2136 Vcvv 2726 [wsbc 2951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sbc 2952 |
This theorem is referenced by: sbc7 2977 sbccom 3026 sbcralt 3027 sbcrext 3028 csbco 3055 |
Copyright terms: Public domain | W3C validator |