| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcco | GIF version | ||
| Description: A composition law for class substitution. (Contributed by NM, 26-Sep-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbcco | ⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3037 | . 2 ⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 → 𝐴 ∈ V) | |
| 2 | sbcex 3037 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | |
| 3 | dfsbcq 3030 | . . 3 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑦][𝑦 / 𝑥]𝜑)) | |
| 4 | dfsbcq 3030 | . . 3 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 5 | sbsbc 3032 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | |
| 6 | 5 | sbbii 1811 | . . . . 5 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑) |
| 7 | nfv 1574 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
| 8 | 7 | sbco2 2016 | . . . . 5 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) |
| 9 | sbsbc 3032 | . . . . 5 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑) | |
| 10 | 6, 8, 9 | 3bitr3ri 211 | . . . 4 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) |
| 11 | sbsbc 3032 | . . . 4 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) | |
| 12 | 10, 11 | bitri 184 | . . 3 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) |
| 13 | 3, 4, 12 | vtoclbg 2862 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| 14 | 1, 2, 13 | pm5.21nii 709 | 1 ⊢ ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 [wsb 1808 ∈ wcel 2200 Vcvv 2799 [wsbc 3028 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-sbc 3029 |
| This theorem is referenced by: sbc7 3055 sbccom 3104 sbcralt 3105 sbcrext 3106 csbco 3134 |
| Copyright terms: Public domain | W3C validator |