ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcco GIF version

Theorem sbcco 3024
Description: A composition law for class substitution. (Contributed by NM, 26-Sep-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
sbcco ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)
Distinct variable group:   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑦)

Proof of Theorem sbcco
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3011 . 2 ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑𝐴 ∈ V)
2 sbcex 3011 . 2 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
3 dfsbcq 3004 . . 3 (𝑧 = 𝐴 → ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑[𝐴 / 𝑦][𝑦 / 𝑥]𝜑))
4 dfsbcq 3004 . . 3 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
5 sbsbc 3006 . . . . . 6 ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)
65sbbii 1789 . . . . 5 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑)
7 nfv 1552 . . . . . 6 𝑦𝜑
87sbco2 1994 . . . . 5 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)
9 sbsbc 3006 . . . . 5 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑[𝑧 / 𝑦][𝑦 / 𝑥]𝜑)
106, 8, 93bitr3ri 211 . . . 4 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)
11 sbsbc 3006 . . . 4 ([𝑧 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)
1210, 11bitri 184 . . 3 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)
133, 4, 12vtoclbg 2836 . 2 (𝐴 ∈ V → ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
141, 2, 13pm5.21nii 706 1 ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  [wsb 1786  wcel 2177  Vcvv 2773  [wsbc 3002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-sbc 3003
This theorem is referenced by:  sbc7  3029  sbccom  3078  sbcralt  3079  sbcrext  3080  csbco  3107
  Copyright terms: Public domain W3C validator