| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr3i | GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 19-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
| 3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitr3i | ⊢ (𝜒 ↔ 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
| 2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | bitr3i 186 | . 2 ⊢ (𝜒 ↔ 𝜓) |
| 4 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
| 5 | 3, 4 | bitri 184 | 1 ⊢ (𝜒 ↔ 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: an12 561 cbval2 1946 cbvex2 1947 cbvaldvaw 1955 sbco2vh 1974 equsb3 1980 sbn 1981 sbim 1982 sbor 1983 sban 1984 sbco2h 1993 sbco2d 1995 sbco2vd 1996 sbcomv 2000 sbco3 2003 sbcom 2004 sbcom2v 2014 sbcom2v2 2015 sbcom2 2016 dfsb7 2020 sb7f 2021 sb7af 2022 sbal 2029 sbex 2033 sbco4lem 2035 moanim 2129 eq2tri 2266 eqsb1 2310 clelsb1 2311 clelsb2 2312 clelsb1f 2353 ralcom4 2796 rexcom4 2797 ceqsralt 2801 gencbvex 2821 gencbval 2823 ceqsrexbv 2906 euind 2962 reuind 2980 sbccomlem 3075 sbccom 3076 raaan 3568 elxp2 4698 eqbrriv 4775 dm0rn0 4901 dfres2 5017 qfto 5078 xpm 5110 rninxp 5132 fununi 5348 dfoprab2 6002 dfer2 6631 euen1 6904 xpsnen 6928 xpassen 6937 enq0enq 7557 prnmaxl 7614 prnminu 7615 suplocexprlemell 7839 |
| Copyright terms: Public domain | W3C validator |