![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3bitr3i | GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr3i | ⊢ (𝜒 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | bitr3i 186 | . 2 ⊢ (𝜒 ↔ 𝜓) |
4 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
5 | 3, 4 | bitri 184 | 1 ⊢ (𝜒 ↔ 𝜃) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: an12 561 cbval2 1921 cbvex2 1922 sbco2vh 1945 equsb3 1951 sbn 1952 sbim 1953 sbor 1954 sban 1955 sbco2h 1964 sbco2d 1966 sbco2vd 1967 sbcomv 1971 sbco3 1974 sbcom 1975 sbcom2v 1985 sbcom2v2 1986 sbcom2 1987 dfsb7 1991 sb7f 1992 sb7af 1993 sbal 2000 sbex 2004 sbco4lem 2006 moanim 2100 eq2tri 2237 eqsb1 2281 clelsb1 2282 clelsb2 2283 clelsb1f 2323 ralcom4 2761 rexcom4 2762 ceqsralt 2766 gencbvex 2785 gencbval 2787 ceqsrexbv 2870 euind 2926 reuind 2944 sbccomlem 3039 sbccom 3040 raaan 3531 elxp2 4646 eqbrriv 4723 dm0rn0 4846 dfres2 4961 qfto 5020 xpm 5052 rninxp 5074 fununi 5286 dfoprab2 5924 dfer2 6538 euen1 6804 xpsnen 6823 xpassen 6832 enq0enq 7432 prnmaxl 7489 prnminu 7490 suplocexprlemell 7714 |
Copyright terms: Public domain | W3C validator |