Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitr3i | GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr3i | ⊢ (𝜒 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | bitr3i 185 | . 2 ⊢ (𝜒 ↔ 𝜓) |
4 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
5 | 3, 4 | bitri 183 | 1 ⊢ (𝜒 ↔ 𝜃) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: an12 551 cbval2 1909 cbvex2 1910 sbco2vh 1933 equsb3 1939 sbn 1940 sbim 1941 sbor 1942 sban 1943 sbco2h 1952 sbco2d 1954 sbco2vd 1955 sbcomv 1959 sbco3 1962 sbcom 1963 sbcom2v 1973 sbcom2v2 1974 sbcom2 1975 dfsb7 1979 sb7f 1980 sb7af 1981 sbal 1988 sbex 1992 sbco4lem 1994 moanim 2088 eq2tri 2226 eqsb1 2270 clelsb1 2271 clelsb2 2272 clelsb1f 2312 ralcom4 2748 rexcom4 2749 ceqsralt 2753 gencbvex 2772 gencbval 2774 ceqsrexbv 2857 euind 2913 reuind 2931 sbccomlem 3025 sbccom 3026 raaan 3515 elxp2 4622 eqbrriv 4699 dm0rn0 4821 dfres2 4936 qfto 4993 xpm 5025 rninxp 5047 fununi 5256 dfoprab2 5889 dfer2 6502 euen1 6768 xpsnen 6787 xpassen 6796 enq0enq 7372 prnmaxl 7429 prnminu 7430 suplocexprlemell 7654 |
Copyright terms: Public domain | W3C validator |