| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr3i | GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 19-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
| 3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitr3i | ⊢ (𝜒 ↔ 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
| 2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | bitr3i 186 | . 2 ⊢ (𝜒 ↔ 𝜓) |
| 4 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
| 5 | 3, 4 | bitri 184 | 1 ⊢ (𝜒 ↔ 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: an12 561 cbval2 1968 cbvex2 1969 cbvaldvaw 1977 sbco2vh 1996 equsb3 2002 sbn 2003 sbim 2004 sbor 2005 sban 2006 sbco2h 2015 sbco2d 2017 sbco2vd 2018 sbcomv 2022 sbco3 2025 sbcom 2026 sbcom2v 2036 sbcom2v2 2037 sbcom2 2038 dfsb7 2042 sb7f 2043 sb7af 2044 sbal 2051 sbex 2055 sbco4lem 2057 moanim 2152 eq2tri 2289 eqsb1 2333 clelsb1 2334 clelsb2 2335 clelsb1f 2376 ralcom4 2822 rexcom4 2823 ceqsralt 2827 gencbvex 2847 gencbval 2849 ceqsrexbv 2934 euind 2990 reuind 3008 sbccomlem 3103 sbccom 3104 raaan 3597 elxp2 4734 eqbrriv 4811 dm0rn0 4937 dfres2 5053 qfto 5114 xpm 5146 rninxp 5168 fununi 5385 dfoprab2 6042 dfer2 6671 euen1 6944 xpsnen 6968 xpassen 6977 enq0enq 7606 prnmaxl 7663 prnminu 7664 suplocexprlemell 7888 |
| Copyright terms: Public domain | W3C validator |