| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3bitr3i | GIF version | ||
| Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 19-Aug-1993.) |
| Ref | Expression |
|---|---|
| 3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
| 3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
| 3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
| Ref | Expression |
|---|---|
| 3bitr3i | ⊢ (𝜒 ↔ 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
| 2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | bitr3i 186 | . 2 ⊢ (𝜒 ↔ 𝜓) |
| 4 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
| 5 | 3, 4 | bitri 184 | 1 ⊢ (𝜒 ↔ 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: an12 561 cbval2 1936 cbvex2 1937 cbvaldvaw 1945 sbco2vh 1964 equsb3 1970 sbn 1971 sbim 1972 sbor 1973 sban 1974 sbco2h 1983 sbco2d 1985 sbco2vd 1986 sbcomv 1990 sbco3 1993 sbcom 1994 sbcom2v 2004 sbcom2v2 2005 sbcom2 2006 dfsb7 2010 sb7f 2011 sb7af 2012 sbal 2019 sbex 2023 sbco4lem 2025 moanim 2119 eq2tri 2256 eqsb1 2300 clelsb1 2301 clelsb2 2302 clelsb1f 2343 ralcom4 2785 rexcom4 2786 ceqsralt 2790 gencbvex 2810 gencbval 2812 ceqsrexbv 2895 euind 2951 reuind 2969 sbccomlem 3064 sbccom 3065 raaan 3556 elxp2 4681 eqbrriv 4758 dm0rn0 4883 dfres2 4998 qfto 5059 xpm 5091 rninxp 5113 fununi 5326 dfoprab2 5969 dfer2 6593 euen1 6861 xpsnen 6880 xpassen 6889 enq0enq 7498 prnmaxl 7555 prnminu 7556 suplocexprlemell 7780 |
| Copyright terms: Public domain | W3C validator |