Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3bitr3i | GIF version |
Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
3bitr3i.1 | ⊢ (𝜑 ↔ 𝜓) |
3bitr3i.2 | ⊢ (𝜑 ↔ 𝜒) |
3bitr3i.3 | ⊢ (𝜓 ↔ 𝜃) |
Ref | Expression |
---|---|
3bitr3i | ⊢ (𝜒 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3bitr3i.2 | . . 3 ⊢ (𝜑 ↔ 𝜒) | |
2 | 3bitr3i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | bitr3i 186 | . 2 ⊢ (𝜒 ↔ 𝜓) |
4 | 3bitr3i.3 | . 2 ⊢ (𝜓 ↔ 𝜃) | |
5 | 3, 4 | bitri 184 | 1 ⊢ (𝜒 ↔ 𝜃) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: an12 561 cbval2 1919 cbvex2 1920 sbco2vh 1943 equsb3 1949 sbn 1950 sbim 1951 sbor 1952 sban 1953 sbco2h 1962 sbco2d 1964 sbco2vd 1965 sbcomv 1969 sbco3 1972 sbcom 1973 sbcom2v 1983 sbcom2v2 1984 sbcom2 1985 dfsb7 1989 sb7f 1990 sb7af 1991 sbal 1998 sbex 2002 sbco4lem 2004 moanim 2098 eq2tri 2235 eqsb1 2279 clelsb1 2280 clelsb2 2281 clelsb1f 2321 ralcom4 2757 rexcom4 2758 ceqsralt 2762 gencbvex 2781 gencbval 2783 ceqsrexbv 2866 euind 2922 reuind 2940 sbccomlem 3035 sbccom 3036 raaan 3527 elxp2 4638 eqbrriv 4715 dm0rn0 4837 dfres2 4952 qfto 5010 xpm 5042 rninxp 5064 fununi 5276 dfoprab2 5912 dfer2 6526 euen1 6792 xpsnen 6811 xpassen 6820 enq0enq 7405 prnmaxl 7462 prnminu 7463 suplocexprlemell 7687 |
Copyright terms: Public domain | W3C validator |