| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-ral 2480 | 
. . . 4
⊢
(∀𝑥 ∈
𝐴 𝑤 ∈ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑤 ∈ 𝐵)) | 
| 2 |   | df-ral 2480 | 
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶)) | 
| 3 |   | eleq2 2260 | 
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝐵 → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ 𝐵)) | 
| 4 | 3 | biimprcd 160 | 
. . . . . . . . . . . 12
⊢ (𝑤 ∈ 𝐵 → (𝑧 = 𝐵 → 𝑤 ∈ 𝑧)) | 
| 5 | 4 | alrimiv 1888 | 
. . . . . . . . . . 11
⊢ (𝑤 ∈ 𝐵 → ∀𝑧(𝑧 = 𝐵 → 𝑤 ∈ 𝑧)) | 
| 6 |   | eqid 2196 | 
. . . . . . . . . . . 12
⊢ 𝐵 = 𝐵 | 
| 7 |   | eqeq1 2203 | 
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝐵 → (𝑧 = 𝐵 ↔ 𝐵 = 𝐵)) | 
| 8 | 7, 3 | imbi12d 234 | 
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝐵 → ((𝑧 = 𝐵 → 𝑤 ∈ 𝑧) ↔ (𝐵 = 𝐵 → 𝑤 ∈ 𝐵))) | 
| 9 | 8 | spcgv 2851 | 
. . . . . . . . . . . 12
⊢ (𝐵 ∈ 𝐶 → (∀𝑧(𝑧 = 𝐵 → 𝑤 ∈ 𝑧) → (𝐵 = 𝐵 → 𝑤 ∈ 𝐵))) | 
| 10 | 6, 9 | mpii 44 | 
. . . . . . . . . . 11
⊢ (𝐵 ∈ 𝐶 → (∀𝑧(𝑧 = 𝐵 → 𝑤 ∈ 𝑧) → 𝑤 ∈ 𝐵)) | 
| 11 | 5, 10 | impbid2 143 | 
. . . . . . . . . 10
⊢ (𝐵 ∈ 𝐶 → (𝑤 ∈ 𝐵 ↔ ∀𝑧(𝑧 = 𝐵 → 𝑤 ∈ 𝑧))) | 
| 12 | 11 | imim2i 12 | 
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶) → (𝑥 ∈ 𝐴 → (𝑤 ∈ 𝐵 ↔ ∀𝑧(𝑧 = 𝐵 → 𝑤 ∈ 𝑧)))) | 
| 13 | 12 | pm5.74d 182 | 
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶) → ((𝑥 ∈ 𝐴 → 𝑤 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → ∀𝑧(𝑧 = 𝐵 → 𝑤 ∈ 𝑧)))) | 
| 14 | 13 | alimi 1469 | 
. . . . . . 7
⊢
(∀𝑥(𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶) → ∀𝑥((𝑥 ∈ 𝐴 → 𝑤 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → ∀𝑧(𝑧 = 𝐵 → 𝑤 ∈ 𝑧)))) | 
| 15 |   | albi 1482 | 
. . . . . . 7
⊢
(∀𝑥((𝑥 ∈ 𝐴 → 𝑤 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → ∀𝑧(𝑧 = 𝐵 → 𝑤 ∈ 𝑧))) → (∀𝑥(𝑥 ∈ 𝐴 → 𝑤 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑧(𝑧 = 𝐵 → 𝑤 ∈ 𝑧)))) | 
| 16 | 14, 15 | syl 14 | 
. . . . . 6
⊢
(∀𝑥(𝑥 ∈ 𝐴 → 𝐵 ∈ 𝐶) → (∀𝑥(𝑥 ∈ 𝐴 → 𝑤 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑧(𝑧 = 𝐵 → 𝑤 ∈ 𝑧)))) | 
| 17 | 2, 16 | sylbi 121 | 
. . . . 5
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝐶 → (∀𝑥(𝑥 ∈ 𝐴 → 𝑤 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑧(𝑧 = 𝐵 → 𝑤 ∈ 𝑧)))) | 
| 18 |   | df-ral 2480 | 
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 (𝑧 = 𝐵 → 𝑤 ∈ 𝑧) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑧 = 𝐵 → 𝑤 ∈ 𝑧))) | 
| 19 | 18 | albii 1484 | 
. . . . . . 7
⊢
(∀𝑧∀𝑥 ∈ 𝐴 (𝑧 = 𝐵 → 𝑤 ∈ 𝑧) ↔ ∀𝑧∀𝑥(𝑥 ∈ 𝐴 → (𝑧 = 𝐵 → 𝑤 ∈ 𝑧))) | 
| 20 |   | alcom 1492 | 
. . . . . . 7
⊢
(∀𝑥∀𝑧(𝑥 ∈ 𝐴 → (𝑧 = 𝐵 → 𝑤 ∈ 𝑧)) ↔ ∀𝑧∀𝑥(𝑥 ∈ 𝐴 → (𝑧 = 𝐵 → 𝑤 ∈ 𝑧))) | 
| 21 | 19, 20 | bitr4i 187 | 
. . . . . 6
⊢
(∀𝑧∀𝑥 ∈ 𝐴 (𝑧 = 𝐵 → 𝑤 ∈ 𝑧) ↔ ∀𝑥∀𝑧(𝑥 ∈ 𝐴 → (𝑧 = 𝐵 → 𝑤 ∈ 𝑧))) | 
| 22 |   | r19.23v 2606 | 
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 (𝑧 = 𝐵 → 𝑤 ∈ 𝑧) ↔ (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑤 ∈ 𝑧)) | 
| 23 |   | vex 2766 | 
. . . . . . . . . 10
⊢ 𝑧 ∈ V | 
| 24 |   | eqeq1 2203 | 
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (𝑦 = 𝐵 ↔ 𝑧 = 𝐵)) | 
| 25 | 24 | rexbidv 2498 | 
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵)) | 
| 26 | 23, 25 | elab 2908 | 
. . . . . . . . 9
⊢ (𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) | 
| 27 | 26 | imbi1i 238 | 
. . . . . . . 8
⊢ ((𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑤 ∈ 𝑧) ↔ (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑤 ∈ 𝑧)) | 
| 28 | 22, 27 | bitr4i 187 | 
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 (𝑧 = 𝐵 → 𝑤 ∈ 𝑧) ↔ (𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑤 ∈ 𝑧)) | 
| 29 | 28 | albii 1484 | 
. . . . . 6
⊢
(∀𝑧∀𝑥 ∈ 𝐴 (𝑧 = 𝐵 → 𝑤 ∈ 𝑧) ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑤 ∈ 𝑧)) | 
| 30 |   | 19.21v 1887 | 
. . . . . . 7
⊢
(∀𝑧(𝑥 ∈ 𝐴 → (𝑧 = 𝐵 → 𝑤 ∈ 𝑧)) ↔ (𝑥 ∈ 𝐴 → ∀𝑧(𝑧 = 𝐵 → 𝑤 ∈ 𝑧))) | 
| 31 | 30 | albii 1484 | 
. . . . . 6
⊢
(∀𝑥∀𝑧(𝑥 ∈ 𝐴 → (𝑧 = 𝐵 → 𝑤 ∈ 𝑧)) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑧(𝑧 = 𝐵 → 𝑤 ∈ 𝑧))) | 
| 32 | 21, 29, 31 | 3bitr3ri 211 | 
. . . . 5
⊢
(∀𝑥(𝑥 ∈ 𝐴 → ∀𝑧(𝑧 = 𝐵 → 𝑤 ∈ 𝑧)) ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑤 ∈ 𝑧)) | 
| 33 | 17, 32 | bitrdi 196 | 
. . . 4
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝐶 → (∀𝑥(𝑥 ∈ 𝐴 → 𝑤 ∈ 𝐵) ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑤 ∈ 𝑧))) | 
| 34 | 1, 33 | bitrid 192 | 
. . 3
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝐶 → (∀𝑥 ∈ 𝐴 𝑤 ∈ 𝐵 ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑤 ∈ 𝑧))) | 
| 35 | 34 | abbidv 2314 | 
. 2
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝐶 → {𝑤 ∣ ∀𝑥 ∈ 𝐴 𝑤 ∈ 𝐵} = {𝑤 ∣ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑤 ∈ 𝑧)}) | 
| 36 |   | df-iin 3919 | 
. 2
⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑤 ∣ ∀𝑥 ∈ 𝐴 𝑤 ∈ 𝐵} | 
| 37 |   | df-int 3875 | 
. 2
⊢ ∩ {𝑦
∣ ∃𝑥 ∈
𝐴 𝑦 = 𝐵} = {𝑤 ∣ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} → 𝑤 ∈ 𝑧)} | 
| 38 | 35, 36, 37 | 3eqtr4g 2254 | 
1
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝐶 → ∩
𝑥 ∈ 𝐴 𝐵 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |