| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sb9 | GIF version | ||
| Description: Commutation of quantification and substitution variables. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.) |
| Ref | Expression |
|---|---|
| sb9 | ⊢ (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb9v 2007 | . . 3 ⊢ (∀𝑦[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ ∀𝑤[𝑤 / 𝑦][𝑤 / 𝑥]𝜑) | |
| 2 | sbcom 2004 | . . . 4 ⊢ ([𝑤 / 𝑦][𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥][𝑤 / 𝑦]𝜑) | |
| 3 | 2 | albii 1494 | . . 3 ⊢ (∀𝑤[𝑤 / 𝑦][𝑤 / 𝑥]𝜑 ↔ ∀𝑤[𝑤 / 𝑥][𝑤 / 𝑦]𝜑) |
| 4 | sb9v 2007 | . . 3 ⊢ (∀𝑤[𝑤 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥[𝑥 / 𝑤][𝑤 / 𝑦]𝜑) | |
| 5 | 1, 3, 4 | 3bitri 206 | . 2 ⊢ (∀𝑦[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ ∀𝑥[𝑥 / 𝑤][𝑤 / 𝑦]𝜑) |
| 6 | ax-17 1550 | . . . 4 ⊢ (𝜑 → ∀𝑤𝜑) | |
| 7 | 6 | sbco2h 1993 | . . 3 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| 8 | 7 | albii 1494 | . 2 ⊢ (∀𝑦[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
| 9 | 6 | sbco2h 1993 | . . 3 ⊢ ([𝑥 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑦]𝜑) |
| 10 | 9 | albii 1494 | . 2 ⊢ (∀𝑥[𝑥 / 𝑤][𝑤 / 𝑦]𝜑 ↔ ∀𝑥[𝑥 / 𝑦]𝜑) |
| 11 | 5, 8, 10 | 3bitr3ri 211 | 1 ⊢ (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1371 [wsb 1786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 |
| This theorem is referenced by: sb9i 2009 |
| Copyright terms: Public domain | W3C validator |