![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sb9 | GIF version |
Description: Commutation of quantification and substitution variables. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.) |
Ref | Expression |
---|---|
sb9 | ⊢ (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb9v 1988 | . . 3 ⊢ (∀𝑦[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ ∀𝑤[𝑤 / 𝑦][𝑤 / 𝑥]𝜑) | |
2 | sbcom 1985 | . . . 4 ⊢ ([𝑤 / 𝑦][𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥][𝑤 / 𝑦]𝜑) | |
3 | 2 | albii 1480 | . . 3 ⊢ (∀𝑤[𝑤 / 𝑦][𝑤 / 𝑥]𝜑 ↔ ∀𝑤[𝑤 / 𝑥][𝑤 / 𝑦]𝜑) |
4 | sb9v 1988 | . . 3 ⊢ (∀𝑤[𝑤 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥[𝑥 / 𝑤][𝑤 / 𝑦]𝜑) | |
5 | 1, 3, 4 | 3bitri 206 | . 2 ⊢ (∀𝑦[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ ∀𝑥[𝑥 / 𝑤][𝑤 / 𝑦]𝜑) |
6 | ax-17 1536 | . . . 4 ⊢ (𝜑 → ∀𝑤𝜑) | |
7 | 6 | sbco2h 1974 | . . 3 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
8 | 7 | albii 1480 | . 2 ⊢ (∀𝑦[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
9 | 6 | sbco2h 1974 | . . 3 ⊢ ([𝑥 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑦]𝜑) |
10 | 9 | albii 1480 | . 2 ⊢ (∀𝑥[𝑥 / 𝑤][𝑤 / 𝑦]𝜑 ↔ ∀𝑥[𝑥 / 𝑦]𝜑) |
11 | 5, 8, 10 | 3bitr3ri 211 | 1 ⊢ (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∀wal 1361 [wsb 1772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 |
This theorem depends on definitions: df-bi 117 df-nf 1471 df-sb 1773 |
This theorem is referenced by: sb9i 1990 |
Copyright terms: Public domain | W3C validator |