ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb9 GIF version

Theorem sb9 1967
Description: Commutation of quantification and substitution variables. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
Assertion
Ref Expression
sb9 (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)

Proof of Theorem sb9
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sb9v 1966 . . 3 (∀𝑦[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ ∀𝑤[𝑤 / 𝑦][𝑤 / 𝑥]𝜑)
2 sbcom 1963 . . . 4 ([𝑤 / 𝑦][𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥][𝑤 / 𝑦]𝜑)
32albii 1458 . . 3 (∀𝑤[𝑤 / 𝑦][𝑤 / 𝑥]𝜑 ↔ ∀𝑤[𝑤 / 𝑥][𝑤 / 𝑦]𝜑)
4 sb9v 1966 . . 3 (∀𝑤[𝑤 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥[𝑥 / 𝑤][𝑤 / 𝑦]𝜑)
51, 3, 43bitri 205 . 2 (∀𝑦[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ ∀𝑥[𝑥 / 𝑤][𝑤 / 𝑦]𝜑)
6 ax-17 1514 . . . 4 (𝜑 → ∀𝑤𝜑)
76sbco2h 1952 . . 3 ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
87albii 1458 . 2 (∀𝑦[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
96sbco2h 1952 . . 3 ([𝑥 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑦]𝜑)
109albii 1458 . 2 (∀𝑥[𝑥 / 𝑤][𝑤 / 𝑦]𝜑 ↔ ∀𝑥[𝑥 / 𝑦]𝜑)
115, 8, 103bitr3ri 210 1 (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 104  wal 1341  [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751
This theorem is referenced by:  sb9i  1968
  Copyright terms: Public domain W3C validator