| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sb9 | GIF version | ||
| Description: Commutation of quantification and substitution variables. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.) | 
| Ref | Expression | 
|---|---|
| sb9 | ⊢ (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sb9v 1997 | . . 3 ⊢ (∀𝑦[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ ∀𝑤[𝑤 / 𝑦][𝑤 / 𝑥]𝜑) | |
| 2 | sbcom 1994 | . . . 4 ⊢ ([𝑤 / 𝑦][𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥][𝑤 / 𝑦]𝜑) | |
| 3 | 2 | albii 1484 | . . 3 ⊢ (∀𝑤[𝑤 / 𝑦][𝑤 / 𝑥]𝜑 ↔ ∀𝑤[𝑤 / 𝑥][𝑤 / 𝑦]𝜑) | 
| 4 | sb9v 1997 | . . 3 ⊢ (∀𝑤[𝑤 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥[𝑥 / 𝑤][𝑤 / 𝑦]𝜑) | |
| 5 | 1, 3, 4 | 3bitri 206 | . 2 ⊢ (∀𝑦[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ ∀𝑥[𝑥 / 𝑤][𝑤 / 𝑦]𝜑) | 
| 6 | ax-17 1540 | . . . 4 ⊢ (𝜑 → ∀𝑤𝜑) | |
| 7 | 6 | sbco2h 1983 | . . 3 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | 
| 8 | 7 | albii 1484 | . 2 ⊢ (∀𝑦[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) | 
| 9 | 6 | sbco2h 1983 | . . 3 ⊢ ([𝑥 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑦]𝜑) | 
| 10 | 9 | albii 1484 | . 2 ⊢ (∀𝑥[𝑥 / 𝑤][𝑤 / 𝑦]𝜑 ↔ ∀𝑥[𝑥 / 𝑦]𝜑) | 
| 11 | 5, 8, 10 | 3bitr3ri 211 | 1 ⊢ (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 ∀wal 1362 [wsb 1776 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 | 
| This theorem is referenced by: sb9i 1999 | 
| Copyright terms: Public domain | W3C validator |