ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb9 GIF version

Theorem sb9 1989
Description: Commutation of quantification and substitution variables. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
Assertion
Ref Expression
sb9 (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)

Proof of Theorem sb9
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sb9v 1988 . . 3 (∀𝑦[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ ∀𝑤[𝑤 / 𝑦][𝑤 / 𝑥]𝜑)
2 sbcom 1985 . . . 4 ([𝑤 / 𝑦][𝑤 / 𝑥]𝜑 ↔ [𝑤 / 𝑥][𝑤 / 𝑦]𝜑)
32albii 1480 . . 3 (∀𝑤[𝑤 / 𝑦][𝑤 / 𝑥]𝜑 ↔ ∀𝑤[𝑤 / 𝑥][𝑤 / 𝑦]𝜑)
4 sb9v 1988 . . 3 (∀𝑤[𝑤 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥[𝑥 / 𝑤][𝑤 / 𝑦]𝜑)
51, 3, 43bitri 206 . 2 (∀𝑦[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ ∀𝑥[𝑥 / 𝑤][𝑤 / 𝑦]𝜑)
6 ax-17 1536 . . . 4 (𝜑 → ∀𝑤𝜑)
76sbco2h 1974 . . 3 ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
87albii 1480 . 2 (∀𝑦[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
96sbco2h 1974 . . 3 ([𝑥 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑦]𝜑)
109albii 1480 . 2 (∀𝑥[𝑥 / 𝑤][𝑤 / 𝑦]𝜑 ↔ ∀𝑥[𝑥 / 𝑦]𝜑)
115, 8, 103bitr3ri 211 1 (∀𝑥[𝑥 / 𝑦]𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1361  [wsb 1772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545
This theorem depends on definitions:  df-bi 117  df-nf 1471  df-sb 1773
This theorem is referenced by:  sb9i  1990
  Copyright terms: Public domain W3C validator