| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dffun6f | GIF version | ||
| Description: Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| dffun6f.1 | ⊢ Ⅎ𝑥𝐴 |
| dffun6f.2 | ⊢ Ⅎ𝑦𝐴 |
| Ref | Expression |
|---|---|
| dffun6f | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun2 5324 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑤∀𝑣∀𝑢((𝑤𝐴𝑣 ∧ 𝑤𝐴𝑢) → 𝑣 = 𝑢))) | |
| 2 | nfcv 2372 | . . . . . . 7 ⊢ Ⅎ𝑦𝑤 | |
| 3 | dffun6f.2 | . . . . . . 7 ⊢ Ⅎ𝑦𝐴 | |
| 4 | nfcv 2372 | . . . . . . 7 ⊢ Ⅎ𝑦𝑣 | |
| 5 | 2, 3, 4 | nfbr 4129 | . . . . . 6 ⊢ Ⅎ𝑦 𝑤𝐴𝑣 |
| 6 | nfv 1574 | . . . . . 6 ⊢ Ⅎ𝑣 𝑤𝐴𝑦 | |
| 7 | breq2 4086 | . . . . . 6 ⊢ (𝑣 = 𝑦 → (𝑤𝐴𝑣 ↔ 𝑤𝐴𝑦)) | |
| 8 | 5, 6, 7 | cbvmo 2117 | . . . . 5 ⊢ (∃*𝑣 𝑤𝐴𝑣 ↔ ∃*𝑦 𝑤𝐴𝑦) |
| 9 | 8 | albii 1516 | . . . 4 ⊢ (∀𝑤∃*𝑣 𝑤𝐴𝑣 ↔ ∀𝑤∃*𝑦 𝑤𝐴𝑦) |
| 10 | breq2 4086 | . . . . . 6 ⊢ (𝑣 = 𝑢 → (𝑤𝐴𝑣 ↔ 𝑤𝐴𝑢)) | |
| 11 | 10 | mo4 2139 | . . . . 5 ⊢ (∃*𝑣 𝑤𝐴𝑣 ↔ ∀𝑣∀𝑢((𝑤𝐴𝑣 ∧ 𝑤𝐴𝑢) → 𝑣 = 𝑢)) |
| 12 | 11 | albii 1516 | . . . 4 ⊢ (∀𝑤∃*𝑣 𝑤𝐴𝑣 ↔ ∀𝑤∀𝑣∀𝑢((𝑤𝐴𝑣 ∧ 𝑤𝐴𝑢) → 𝑣 = 𝑢)) |
| 13 | nfcv 2372 | . . . . . . 7 ⊢ Ⅎ𝑥𝑤 | |
| 14 | dffun6f.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
| 15 | nfcv 2372 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
| 16 | 13, 14, 15 | nfbr 4129 | . . . . . 6 ⊢ Ⅎ𝑥 𝑤𝐴𝑦 |
| 17 | 16 | nfmo 2097 | . . . . 5 ⊢ Ⅎ𝑥∃*𝑦 𝑤𝐴𝑦 |
| 18 | nfv 1574 | . . . . 5 ⊢ Ⅎ𝑤∃*𝑦 𝑥𝐴𝑦 | |
| 19 | breq1 4085 | . . . . . 6 ⊢ (𝑤 = 𝑥 → (𝑤𝐴𝑦 ↔ 𝑥𝐴𝑦)) | |
| 20 | 19 | mobidv 2113 | . . . . 5 ⊢ (𝑤 = 𝑥 → (∃*𝑦 𝑤𝐴𝑦 ↔ ∃*𝑦 𝑥𝐴𝑦)) |
| 21 | 17, 18, 20 | cbval 1800 | . . . 4 ⊢ (∀𝑤∃*𝑦 𝑤𝐴𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦) |
| 22 | 9, 12, 21 | 3bitr3ri 211 | . . 3 ⊢ (∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑤∀𝑣∀𝑢((𝑤𝐴𝑣 ∧ 𝑤𝐴𝑢) → 𝑣 = 𝑢)) |
| 23 | 22 | anbi2i 457 | . 2 ⊢ ((Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑤∀𝑣∀𝑢((𝑤𝐴𝑣 ∧ 𝑤𝐴𝑢) → 𝑣 = 𝑢))) |
| 24 | 1, 23 | bitr4i 187 | 1 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1393 ∃*wmo 2078 Ⅎwnfc 2359 class class class wbr 4082 Rel wrel 4721 Fun wfun 5308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-id 4381 df-cnv 4724 df-co 4725 df-fun 5316 |
| This theorem is referenced by: dffun6 5328 dffun4f 5330 funopab 5349 |
| Copyright terms: Public domain | W3C validator |