![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dffun6f | GIF version |
Description: Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
dffun6f.1 | ⊢ Ⅎ𝑥𝐴 |
dffun6f.2 | ⊢ Ⅎ𝑦𝐴 |
Ref | Expression |
---|---|
dffun6f | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffun2 5226 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑤∀𝑣∀𝑢((𝑤𝐴𝑣 ∧ 𝑤𝐴𝑢) → 𝑣 = 𝑢))) | |
2 | nfcv 2319 | . . . . . . 7 ⊢ Ⅎ𝑦𝑤 | |
3 | dffun6f.2 | . . . . . . 7 ⊢ Ⅎ𝑦𝐴 | |
4 | nfcv 2319 | . . . . . . 7 ⊢ Ⅎ𝑦𝑣 | |
5 | 2, 3, 4 | nfbr 4049 | . . . . . 6 ⊢ Ⅎ𝑦 𝑤𝐴𝑣 |
6 | nfv 1528 | . . . . . 6 ⊢ Ⅎ𝑣 𝑤𝐴𝑦 | |
7 | breq2 4007 | . . . . . 6 ⊢ (𝑣 = 𝑦 → (𝑤𝐴𝑣 ↔ 𝑤𝐴𝑦)) | |
8 | 5, 6, 7 | cbvmo 2066 | . . . . 5 ⊢ (∃*𝑣 𝑤𝐴𝑣 ↔ ∃*𝑦 𝑤𝐴𝑦) |
9 | 8 | albii 1470 | . . . 4 ⊢ (∀𝑤∃*𝑣 𝑤𝐴𝑣 ↔ ∀𝑤∃*𝑦 𝑤𝐴𝑦) |
10 | breq2 4007 | . . . . . 6 ⊢ (𝑣 = 𝑢 → (𝑤𝐴𝑣 ↔ 𝑤𝐴𝑢)) | |
11 | 10 | mo4 2087 | . . . . 5 ⊢ (∃*𝑣 𝑤𝐴𝑣 ↔ ∀𝑣∀𝑢((𝑤𝐴𝑣 ∧ 𝑤𝐴𝑢) → 𝑣 = 𝑢)) |
12 | 11 | albii 1470 | . . . 4 ⊢ (∀𝑤∃*𝑣 𝑤𝐴𝑣 ↔ ∀𝑤∀𝑣∀𝑢((𝑤𝐴𝑣 ∧ 𝑤𝐴𝑢) → 𝑣 = 𝑢)) |
13 | nfcv 2319 | . . . . . . 7 ⊢ Ⅎ𝑥𝑤 | |
14 | dffun6f.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
15 | nfcv 2319 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
16 | 13, 14, 15 | nfbr 4049 | . . . . . 6 ⊢ Ⅎ𝑥 𝑤𝐴𝑦 |
17 | 16 | nfmo 2046 | . . . . 5 ⊢ Ⅎ𝑥∃*𝑦 𝑤𝐴𝑦 |
18 | nfv 1528 | . . . . 5 ⊢ Ⅎ𝑤∃*𝑦 𝑥𝐴𝑦 | |
19 | breq1 4006 | . . . . . 6 ⊢ (𝑤 = 𝑥 → (𝑤𝐴𝑦 ↔ 𝑥𝐴𝑦)) | |
20 | 19 | mobidv 2062 | . . . . 5 ⊢ (𝑤 = 𝑥 → (∃*𝑦 𝑤𝐴𝑦 ↔ ∃*𝑦 𝑥𝐴𝑦)) |
21 | 17, 18, 20 | cbval 1754 | . . . 4 ⊢ (∀𝑤∃*𝑦 𝑤𝐴𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦) |
22 | 9, 12, 21 | 3bitr3ri 211 | . . 3 ⊢ (∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑤∀𝑣∀𝑢((𝑤𝐴𝑣 ∧ 𝑤𝐴𝑢) → 𝑣 = 𝑢)) |
23 | 22 | anbi2i 457 | . 2 ⊢ ((Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑤∀𝑣∀𝑢((𝑤𝐴𝑣 ∧ 𝑤𝐴𝑢) → 𝑣 = 𝑢))) |
24 | 1, 23 | bitr4i 187 | 1 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1351 ∃*wmo 2027 Ⅎwnfc 2306 class class class wbr 4003 Rel wrel 4631 Fun wfun 5210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-v 2739 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-br 4004 df-opab 4065 df-id 4293 df-cnv 4634 df-co 4635 df-fun 5218 |
This theorem is referenced by: dffun6 5230 dffun4f 5232 funopab 5251 |
Copyright terms: Public domain | W3C validator |