Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dffun6f | GIF version |
Description: Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
dffun6f.1 | ⊢ Ⅎ𝑥𝐴 |
dffun6f.2 | ⊢ Ⅎ𝑦𝐴 |
Ref | Expression |
---|---|
dffun6f | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffun2 5208 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑤∀𝑣∀𝑢((𝑤𝐴𝑣 ∧ 𝑤𝐴𝑢) → 𝑣 = 𝑢))) | |
2 | nfcv 2312 | . . . . . . 7 ⊢ Ⅎ𝑦𝑤 | |
3 | dffun6f.2 | . . . . . . 7 ⊢ Ⅎ𝑦𝐴 | |
4 | nfcv 2312 | . . . . . . 7 ⊢ Ⅎ𝑦𝑣 | |
5 | 2, 3, 4 | nfbr 4035 | . . . . . 6 ⊢ Ⅎ𝑦 𝑤𝐴𝑣 |
6 | nfv 1521 | . . . . . 6 ⊢ Ⅎ𝑣 𝑤𝐴𝑦 | |
7 | breq2 3993 | . . . . . 6 ⊢ (𝑣 = 𝑦 → (𝑤𝐴𝑣 ↔ 𝑤𝐴𝑦)) | |
8 | 5, 6, 7 | cbvmo 2059 | . . . . 5 ⊢ (∃*𝑣 𝑤𝐴𝑣 ↔ ∃*𝑦 𝑤𝐴𝑦) |
9 | 8 | albii 1463 | . . . 4 ⊢ (∀𝑤∃*𝑣 𝑤𝐴𝑣 ↔ ∀𝑤∃*𝑦 𝑤𝐴𝑦) |
10 | breq2 3993 | . . . . . 6 ⊢ (𝑣 = 𝑢 → (𝑤𝐴𝑣 ↔ 𝑤𝐴𝑢)) | |
11 | 10 | mo4 2080 | . . . . 5 ⊢ (∃*𝑣 𝑤𝐴𝑣 ↔ ∀𝑣∀𝑢((𝑤𝐴𝑣 ∧ 𝑤𝐴𝑢) → 𝑣 = 𝑢)) |
12 | 11 | albii 1463 | . . . 4 ⊢ (∀𝑤∃*𝑣 𝑤𝐴𝑣 ↔ ∀𝑤∀𝑣∀𝑢((𝑤𝐴𝑣 ∧ 𝑤𝐴𝑢) → 𝑣 = 𝑢)) |
13 | nfcv 2312 | . . . . . . 7 ⊢ Ⅎ𝑥𝑤 | |
14 | dffun6f.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
15 | nfcv 2312 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
16 | 13, 14, 15 | nfbr 4035 | . . . . . 6 ⊢ Ⅎ𝑥 𝑤𝐴𝑦 |
17 | 16 | nfmo 2039 | . . . . 5 ⊢ Ⅎ𝑥∃*𝑦 𝑤𝐴𝑦 |
18 | nfv 1521 | . . . . 5 ⊢ Ⅎ𝑤∃*𝑦 𝑥𝐴𝑦 | |
19 | breq1 3992 | . . . . . 6 ⊢ (𝑤 = 𝑥 → (𝑤𝐴𝑦 ↔ 𝑥𝐴𝑦)) | |
20 | 19 | mobidv 2055 | . . . . 5 ⊢ (𝑤 = 𝑥 → (∃*𝑦 𝑤𝐴𝑦 ↔ ∃*𝑦 𝑥𝐴𝑦)) |
21 | 17, 18, 20 | cbval 1747 | . . . 4 ⊢ (∀𝑤∃*𝑦 𝑤𝐴𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦) |
22 | 9, 12, 21 | 3bitr3ri 210 | . . 3 ⊢ (∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑤∀𝑣∀𝑢((𝑤𝐴𝑣 ∧ 𝑤𝐴𝑢) → 𝑣 = 𝑢)) |
23 | 22 | anbi2i 454 | . 2 ⊢ ((Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑤∀𝑣∀𝑢((𝑤𝐴𝑣 ∧ 𝑤𝐴𝑢) → 𝑣 = 𝑢))) |
24 | 1, 23 | bitr4i 186 | 1 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1346 ∃*wmo 2020 Ⅎwnfc 2299 class class class wbr 3989 Rel wrel 4616 Fun wfun 5192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-cnv 4619 df-co 4620 df-fun 5200 |
This theorem is referenced by: dffun6 5212 dffun4f 5214 funopab 5233 |
Copyright terms: Public domain | W3C validator |