ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun6f GIF version

Theorem dffun6f 5092
Description: Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
dffun6f.1 𝑥𝐴
dffun6f.2 𝑦𝐴
Assertion
Ref Expression
dffun6f (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem dffun6f
Dummy variables 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun2 5089 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑤𝑣𝑢((𝑤𝐴𝑣𝑤𝐴𝑢) → 𝑣 = 𝑢)))
2 nfcv 2253 . . . . . . 7 𝑦𝑤
3 dffun6f.2 . . . . . . 7 𝑦𝐴
4 nfcv 2253 . . . . . . 7 𝑦𝑣
52, 3, 4nfbr 3937 . . . . . 6 𝑦 𝑤𝐴𝑣
6 nfv 1489 . . . . . 6 𝑣 𝑤𝐴𝑦
7 breq2 3897 . . . . . 6 (𝑣 = 𝑦 → (𝑤𝐴𝑣𝑤𝐴𝑦))
85, 6, 7cbvmo 2013 . . . . 5 (∃*𝑣 𝑤𝐴𝑣 ↔ ∃*𝑦 𝑤𝐴𝑦)
98albii 1427 . . . 4 (∀𝑤∃*𝑣 𝑤𝐴𝑣 ↔ ∀𝑤∃*𝑦 𝑤𝐴𝑦)
10 breq2 3897 . . . . . 6 (𝑣 = 𝑢 → (𝑤𝐴𝑣𝑤𝐴𝑢))
1110mo4 2034 . . . . 5 (∃*𝑣 𝑤𝐴𝑣 ↔ ∀𝑣𝑢((𝑤𝐴𝑣𝑤𝐴𝑢) → 𝑣 = 𝑢))
1211albii 1427 . . . 4 (∀𝑤∃*𝑣 𝑤𝐴𝑣 ↔ ∀𝑤𝑣𝑢((𝑤𝐴𝑣𝑤𝐴𝑢) → 𝑣 = 𝑢))
13 nfcv 2253 . . . . . . 7 𝑥𝑤
14 dffun6f.1 . . . . . . 7 𝑥𝐴
15 nfcv 2253 . . . . . . 7 𝑥𝑦
1613, 14, 15nfbr 3937 . . . . . 6 𝑥 𝑤𝐴𝑦
1716nfmo 1993 . . . . 5 𝑥∃*𝑦 𝑤𝐴𝑦
18 nfv 1489 . . . . 5 𝑤∃*𝑦 𝑥𝐴𝑦
19 breq1 3896 . . . . . 6 (𝑤 = 𝑥 → (𝑤𝐴𝑦𝑥𝐴𝑦))
2019mobidv 2009 . . . . 5 (𝑤 = 𝑥 → (∃*𝑦 𝑤𝐴𝑦 ↔ ∃*𝑦 𝑥𝐴𝑦))
2117, 18, 20cbval 1708 . . . 4 (∀𝑤∃*𝑦 𝑤𝐴𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦)
229, 12, 213bitr3ri 210 . . 3 (∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑤𝑣𝑢((𝑤𝐴𝑣𝑤𝐴𝑢) → 𝑣 = 𝑢))
2322anbi2i 450 . 2 ((Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑤𝑣𝑢((𝑤𝐴𝑣𝑤𝐴𝑢) → 𝑣 = 𝑢)))
241, 23bitr4i 186 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1310  ∃*wmo 1974  wnfc 2240   class class class wbr 3893  Rel wrel 4502  Fun wfun 5073
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-br 3894  df-opab 3948  df-id 4173  df-cnv 4505  df-co 4506  df-fun 5081
This theorem is referenced by:  dffun6  5093  dffun4f  5095  funopab  5114
  Copyright terms: Public domain W3C validator