| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dffun6f | GIF version | ||
| Description: Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| dffun6f.1 | ⊢ Ⅎ𝑥𝐴 |
| dffun6f.2 | ⊢ Ⅎ𝑦𝐴 |
| Ref | Expression |
|---|---|
| dffun6f | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun2 5269 | . 2 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑤∀𝑣∀𝑢((𝑤𝐴𝑣 ∧ 𝑤𝐴𝑢) → 𝑣 = 𝑢))) | |
| 2 | nfcv 2339 | . . . . . . 7 ⊢ Ⅎ𝑦𝑤 | |
| 3 | dffun6f.2 | . . . . . . 7 ⊢ Ⅎ𝑦𝐴 | |
| 4 | nfcv 2339 | . . . . . . 7 ⊢ Ⅎ𝑦𝑣 | |
| 5 | 2, 3, 4 | nfbr 4080 | . . . . . 6 ⊢ Ⅎ𝑦 𝑤𝐴𝑣 |
| 6 | nfv 1542 | . . . . . 6 ⊢ Ⅎ𝑣 𝑤𝐴𝑦 | |
| 7 | breq2 4038 | . . . . . 6 ⊢ (𝑣 = 𝑦 → (𝑤𝐴𝑣 ↔ 𝑤𝐴𝑦)) | |
| 8 | 5, 6, 7 | cbvmo 2085 | . . . . 5 ⊢ (∃*𝑣 𝑤𝐴𝑣 ↔ ∃*𝑦 𝑤𝐴𝑦) |
| 9 | 8 | albii 1484 | . . . 4 ⊢ (∀𝑤∃*𝑣 𝑤𝐴𝑣 ↔ ∀𝑤∃*𝑦 𝑤𝐴𝑦) |
| 10 | breq2 4038 | . . . . . 6 ⊢ (𝑣 = 𝑢 → (𝑤𝐴𝑣 ↔ 𝑤𝐴𝑢)) | |
| 11 | 10 | mo4 2106 | . . . . 5 ⊢ (∃*𝑣 𝑤𝐴𝑣 ↔ ∀𝑣∀𝑢((𝑤𝐴𝑣 ∧ 𝑤𝐴𝑢) → 𝑣 = 𝑢)) |
| 12 | 11 | albii 1484 | . . . 4 ⊢ (∀𝑤∃*𝑣 𝑤𝐴𝑣 ↔ ∀𝑤∀𝑣∀𝑢((𝑤𝐴𝑣 ∧ 𝑤𝐴𝑢) → 𝑣 = 𝑢)) |
| 13 | nfcv 2339 | . . . . . . 7 ⊢ Ⅎ𝑥𝑤 | |
| 14 | dffun6f.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
| 15 | nfcv 2339 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
| 16 | 13, 14, 15 | nfbr 4080 | . . . . . 6 ⊢ Ⅎ𝑥 𝑤𝐴𝑦 |
| 17 | 16 | nfmo 2065 | . . . . 5 ⊢ Ⅎ𝑥∃*𝑦 𝑤𝐴𝑦 |
| 18 | nfv 1542 | . . . . 5 ⊢ Ⅎ𝑤∃*𝑦 𝑥𝐴𝑦 | |
| 19 | breq1 4037 | . . . . . 6 ⊢ (𝑤 = 𝑥 → (𝑤𝐴𝑦 ↔ 𝑥𝐴𝑦)) | |
| 20 | 19 | mobidv 2081 | . . . . 5 ⊢ (𝑤 = 𝑥 → (∃*𝑦 𝑤𝐴𝑦 ↔ ∃*𝑦 𝑥𝐴𝑦)) |
| 21 | 17, 18, 20 | cbval 1768 | . . . 4 ⊢ (∀𝑤∃*𝑦 𝑤𝐴𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦) |
| 22 | 9, 12, 21 | 3bitr3ri 211 | . . 3 ⊢ (∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑤∀𝑣∀𝑢((𝑤𝐴𝑣 ∧ 𝑤𝐴𝑢) → 𝑣 = 𝑢)) |
| 23 | 22 | anbi2i 457 | . 2 ⊢ ((Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑤∀𝑣∀𝑢((𝑤𝐴𝑣 ∧ 𝑤𝐴𝑢) → 𝑣 = 𝑢))) |
| 24 | 1, 23 | bitr4i 187 | 1 ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 ∃*wmo 2046 Ⅎwnfc 2326 class class class wbr 4034 Rel wrel 4669 Fun wfun 5253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-id 4329 df-cnv 4672 df-co 4673 df-fun 5261 |
| This theorem is referenced by: dffun6 5273 dffun4f 5275 funopab 5294 |
| Copyright terms: Public domain | W3C validator |