| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3jaoi | GIF version | ||
| Description: Disjunction of 3 antecedents (inference). (Contributed by NM, 12-Sep-1995.) |
| Ref | Expression |
|---|---|
| 3jaoi.1 | ⊢ (𝜑 → 𝜓) |
| 3jaoi.2 | ⊢ (𝜒 → 𝜓) |
| 3jaoi.3 | ⊢ (𝜃 → 𝜓) |
| Ref | Expression |
|---|---|
| 3jaoi | ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jaoi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 3jaoi.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
| 3 | 3jaoi.3 | . . 3 ⊢ (𝜃 → 𝜓) | |
| 4 | 1, 2, 3 | 3pm3.2i 1178 | . 2 ⊢ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) |
| 5 | 3jao 1314 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) → ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓)) | |
| 6 | 4, 5 | ax-mp 5 | 1 ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ w3o 980 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 |
| This theorem is referenced by: 3jaoian 1318 3ianorr 1322 acexmidlem1 5940 nndceq 6585 nndcel 6586 znegcl 9403 xrltnr 9901 nltpnft 9936 ngtmnft 9939 xrrebnd 9941 xnegcl 9954 xnegneg 9955 xltnegi 9957 xrpnfdc 9964 xrmnfdc 9965 xnegid 9981 xaddid1 9984 xposdif 10004 prm23lt5 12586 zabsle1 15476 gausslemma2dlem0f 15531 gausslemma2dlem0i 15534 2lgsoddprm 15590 |
| Copyright terms: Public domain | W3C validator |