| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3jaoi | GIF version | ||
| Description: Disjunction of 3 antecedents (inference). (Contributed by NM, 12-Sep-1995.) |
| Ref | Expression |
|---|---|
| 3jaoi.1 | ⊢ (𝜑 → 𝜓) |
| 3jaoi.2 | ⊢ (𝜒 → 𝜓) |
| 3jaoi.3 | ⊢ (𝜃 → 𝜓) |
| Ref | Expression |
|---|---|
| 3jaoi | ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jaoi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 3jaoi.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
| 3 | 3jaoi.3 | . . 3 ⊢ (𝜃 → 𝜓) | |
| 4 | 1, 2, 3 | 3pm3.2i 1199 | . 2 ⊢ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) |
| 5 | 3jao 1335 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) → ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓)) | |
| 6 | 4, 5 | ax-mp 5 | 1 ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ w3o 1001 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 |
| This theorem is referenced by: 3jaoian 1339 3ianorr 1343 acexmidlem1 5997 nndceq 6645 nndcel 6646 znegcl 9477 xrltnr 9975 nltpnft 10010 ngtmnft 10013 xrrebnd 10015 xnegcl 10028 xnegneg 10029 xltnegi 10031 xrpnfdc 10038 xrmnfdc 10039 xnegid 10055 xaddid1 10058 xposdif 10078 prm23lt5 12786 zabsle1 15678 gausslemma2dlem0f 15733 gausslemma2dlem0i 15736 2lgsoddprm 15792 |
| Copyright terms: Public domain | W3C validator |