ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3jaoi GIF version

Theorem 3jaoi 1282
Description: Disjunction of 3 antecedents (inference). (Contributed by NM, 12-Sep-1995.)
Hypotheses
Ref Expression
3jaoi.1 (𝜑𝜓)
3jaoi.2 (𝜒𝜓)
3jaoi.3 (𝜃𝜓)
Assertion
Ref Expression
3jaoi ((𝜑𝜒𝜃) → 𝜓)

Proof of Theorem 3jaoi
StepHypRef Expression
1 3jaoi.1 . . 3 (𝜑𝜓)
2 3jaoi.2 . . 3 (𝜒𝜓)
3 3jaoi.3 . . 3 (𝜃𝜓)
41, 2, 33pm3.2i 1160 . 2 ((𝜑𝜓) ∧ (𝜒𝜓) ∧ (𝜃𝜓))
5 3jao 1280 . 2 (((𝜑𝜓) ∧ (𝜒𝜓) ∧ (𝜃𝜓)) → ((𝜑𝜒𝜃) → 𝜓))
64, 5ax-mp 5 1 ((𝜑𝜒𝜃) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 962  w3a 963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965
This theorem is referenced by:  3jaoian  1284  3ianorr  1288  acexmidlem1  5810  nndceq  6435  nndcel  6436  znegcl  9177  xrltnr  9664  nltpnft  9696  ngtmnft  9699  xrrebnd  9701  xnegcl  9714  xnegneg  9715  xltnegi  9717  xrpnfdc  9724  xrmnfdc  9725  xnegid  9741  xaddid1  9744  xposdif  9764
  Copyright terms: Public domain W3C validator