| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3jaoi | GIF version | ||
| Description: Disjunction of 3 antecedents (inference). (Contributed by NM, 12-Sep-1995.) |
| Ref | Expression |
|---|---|
| 3jaoi.1 | ⊢ (𝜑 → 𝜓) |
| 3jaoi.2 | ⊢ (𝜒 → 𝜓) |
| 3jaoi.3 | ⊢ (𝜃 → 𝜓) |
| Ref | Expression |
|---|---|
| 3jaoi | ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jaoi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 3jaoi.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
| 3 | 3jaoi.3 | . . 3 ⊢ (𝜃 → 𝜓) | |
| 4 | 1, 2, 3 | 3pm3.2i 1178 | . 2 ⊢ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) |
| 5 | 3jao 1314 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) → ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓)) | |
| 6 | 4, 5 | ax-mp 5 | 1 ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ w3o 980 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 |
| This theorem is referenced by: 3jaoian 1318 3ianorr 1322 acexmidlem1 5942 nndceq 6587 nndcel 6588 znegcl 9405 xrltnr 9903 nltpnft 9938 ngtmnft 9941 xrrebnd 9943 xnegcl 9956 xnegneg 9957 xltnegi 9959 xrpnfdc 9966 xrmnfdc 9967 xnegid 9983 xaddid1 9986 xposdif 10006 prm23lt5 12619 zabsle1 15509 gausslemma2dlem0f 15564 gausslemma2dlem0i 15567 2lgsoddprm 15623 |
| Copyright terms: Public domain | W3C validator |