![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3jaoi | GIF version |
Description: Disjunction of 3 antecedents (inference). (Contributed by NM, 12-Sep-1995.) |
Ref | Expression |
---|---|
3jaoi.1 | ⊢ (𝜑 → 𝜓) |
3jaoi.2 | ⊢ (𝜒 → 𝜓) |
3jaoi.3 | ⊢ (𝜃 → 𝜓) |
Ref | Expression |
---|---|
3jaoi | ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaoi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 3jaoi.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
3 | 3jaoi.3 | . . 3 ⊢ (𝜃 → 𝜓) | |
4 | 1, 2, 3 | 3pm3.2i 1175 | . 2 ⊢ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) |
5 | 3jao 1301 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) → ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓)) | |
6 | 4, 5 | ax-mp 5 | 1 ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ w3o 977 ∧ w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 |
This theorem is referenced by: 3jaoian 1305 3ianorr 1309 acexmidlem1 5873 nndceq 6502 nndcel 6503 znegcl 9286 xrltnr 9781 nltpnft 9816 ngtmnft 9819 xrrebnd 9821 xnegcl 9834 xnegneg 9835 xltnegi 9837 xrpnfdc 9844 xrmnfdc 9845 xnegid 9861 xaddid1 9864 xposdif 9884 prm23lt5 12265 zabsle1 14485 |
Copyright terms: Public domain | W3C validator |