Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3jaoi | GIF version |
Description: Disjunction of 3 antecedents (inference). (Contributed by NM, 12-Sep-1995.) |
Ref | Expression |
---|---|
3jaoi.1 | ⊢ (𝜑 → 𝜓) |
3jaoi.2 | ⊢ (𝜒 → 𝜓) |
3jaoi.3 | ⊢ (𝜃 → 𝜓) |
Ref | Expression |
---|---|
3jaoi | ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaoi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 3jaoi.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
3 | 3jaoi.3 | . . 3 ⊢ (𝜃 → 𝜓) | |
4 | 1, 2, 3 | 3pm3.2i 1165 | . 2 ⊢ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) |
5 | 3jao 1291 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) → ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓)) | |
6 | 4, 5 | ax-mp 5 | 1 ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ w3o 967 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 |
This theorem is referenced by: 3jaoian 1295 3ianorr 1299 acexmidlem1 5837 nndceq 6463 nndcel 6464 znegcl 9218 xrltnr 9711 nltpnft 9746 ngtmnft 9749 xrrebnd 9751 xnegcl 9764 xnegneg 9765 xltnegi 9767 xrpnfdc 9774 xrmnfdc 9775 xnegid 9791 xaddid1 9794 xposdif 9814 prm23lt5 12191 zabsle1 13500 |
Copyright terms: Public domain | W3C validator |