ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3jaoi GIF version

Theorem 3jaoi 1316
Description: Disjunction of 3 antecedents (inference). (Contributed by NM, 12-Sep-1995.)
Hypotheses
Ref Expression
3jaoi.1 (𝜑𝜓)
3jaoi.2 (𝜒𝜓)
3jaoi.3 (𝜃𝜓)
Assertion
Ref Expression
3jaoi ((𝜑𝜒𝜃) → 𝜓)

Proof of Theorem 3jaoi
StepHypRef Expression
1 3jaoi.1 . . 3 (𝜑𝜓)
2 3jaoi.2 . . 3 (𝜒𝜓)
3 3jaoi.3 . . 3 (𝜃𝜓)
41, 2, 33pm3.2i 1178 . 2 ((𝜑𝜓) ∧ (𝜒𝜓) ∧ (𝜃𝜓))
5 3jao 1314 . 2 (((𝜑𝜓) ∧ (𝜒𝜓) ∧ (𝜃𝜓)) → ((𝜑𝜒𝜃) → 𝜓))
64, 5ax-mp 5 1 ((𝜑𝜒𝜃) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 980  w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983
This theorem is referenced by:  3jaoian  1318  3ianorr  1322  acexmidlem1  5963  nndceq  6608  nndcel  6609  znegcl  9438  xrltnr  9936  nltpnft  9971  ngtmnft  9974  xrrebnd  9976  xnegcl  9989  xnegneg  9990  xltnegi  9992  xrpnfdc  9999  xrmnfdc  10000  xnegid  10016  xaddid1  10019  xposdif  10039  prm23lt5  12701  zabsle1  15591  gausslemma2dlem0f  15646  gausslemma2dlem0i  15649  2lgsoddprm  15705
  Copyright terms: Public domain W3C validator