| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3jaoi | GIF version | ||
| Description: Disjunction of 3 antecedents (inference). (Contributed by NM, 12-Sep-1995.) |
| Ref | Expression |
|---|---|
| 3jaoi.1 | ⊢ (𝜑 → 𝜓) |
| 3jaoi.2 | ⊢ (𝜒 → 𝜓) |
| 3jaoi.3 | ⊢ (𝜃 → 𝜓) |
| Ref | Expression |
|---|---|
| 3jaoi | ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jaoi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 3jaoi.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
| 3 | 3jaoi.3 | . . 3 ⊢ (𝜃 → 𝜓) | |
| 4 | 1, 2, 3 | 3pm3.2i 1177 | . 2 ⊢ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) |
| 5 | 3jao 1312 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) → ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓)) | |
| 6 | 4, 5 | ax-mp 5 | 1 ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ w3o 979 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 |
| This theorem is referenced by: 3jaoian 1316 3ianorr 1320 acexmidlem1 5921 nndceq 6566 nndcel 6567 znegcl 9376 xrltnr 9873 nltpnft 9908 ngtmnft 9911 xrrebnd 9913 xnegcl 9926 xnegneg 9927 xltnegi 9929 xrpnfdc 9936 xrmnfdc 9937 xnegid 9953 xaddid1 9956 xposdif 9976 prm23lt5 12459 zabsle1 15348 gausslemma2dlem0f 15403 gausslemma2dlem0i 15406 2lgsoddprm 15462 |
| Copyright terms: Public domain | W3C validator |