ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3jaoi GIF version

Theorem 3jaoi 1314
Description: Disjunction of 3 antecedents (inference). (Contributed by NM, 12-Sep-1995.)
Hypotheses
Ref Expression
3jaoi.1 (𝜑𝜓)
3jaoi.2 (𝜒𝜓)
3jaoi.3 (𝜃𝜓)
Assertion
Ref Expression
3jaoi ((𝜑𝜒𝜃) → 𝜓)

Proof of Theorem 3jaoi
StepHypRef Expression
1 3jaoi.1 . . 3 (𝜑𝜓)
2 3jaoi.2 . . 3 (𝜒𝜓)
3 3jaoi.3 . . 3 (𝜃𝜓)
41, 2, 33pm3.2i 1177 . 2 ((𝜑𝜓) ∧ (𝜒𝜓) ∧ (𝜃𝜓))
5 3jao 1312 . 2 (((𝜑𝜓) ∧ (𝜒𝜓) ∧ (𝜃𝜓)) → ((𝜑𝜒𝜃) → 𝜓))
64, 5ax-mp 5 1 ((𝜑𝜒𝜃) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 979  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982
This theorem is referenced by:  3jaoian  1316  3ianorr  1320  acexmidlem1  5914  nndceq  6552  nndcel  6553  znegcl  9348  xrltnr  9845  nltpnft  9880  ngtmnft  9883  xrrebnd  9885  xnegcl  9898  xnegneg  9899  xltnegi  9901  xrpnfdc  9908  xrmnfdc  9909  xnegid  9925  xaddid1  9928  xposdif  9948  prm23lt5  12401  zabsle1  15115  gausslemma2dlem0f  15170  gausslemma2dlem0i  15173
  Copyright terms: Public domain W3C validator