![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3jaod | GIF version |
Description: Disjunction of 3 antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
3jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
3jaod.3 | ⊢ (𝜑 → (𝜏 → 𝜒)) |
Ref | Expression |
---|---|
3jaod | ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaod.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 3jaod.2 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
3 | 3jaod.3 | . 2 ⊢ (𝜑 → (𝜏 → 𝜒)) | |
4 | 3jao 1312 | . 2 ⊢ (((𝜓 → 𝜒) ∧ (𝜃 → 𝜒) ∧ (𝜏 → 𝜒)) → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) | |
5 | 1, 2, 3, 4 | syl3anc 1249 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ w3o 979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 |
This theorem is referenced by: 3jaodan 1317 3jaao 1319 issod 4351 nnawordex 6584 exmidontri2or 7305 addlocprlem 7597 nqprloc 7607 ltexprlemrl 7672 aptiprleml 7701 aptiprlemu 7702 elnn0z 9333 zaddcl 9360 zletric 9364 zlelttric 9365 zltnle 9366 zdceq 9395 zdcle 9396 zdclt 9397 nn01to3 9685 xposdif 9951 fzdcel 10109 qletric 10314 qlelttric 10315 qltnle 10316 qdceq 10317 qdclt 10318 frec2uzlt2d 10478 triap 15589 tridceq 15616 |
Copyright terms: Public domain | W3C validator |