| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3jaod | GIF version | ||
| Description: Disjunction of 3 antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| 3jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 3jaod.3 | ⊢ (𝜑 → (𝜏 → 𝜒)) |
| Ref | Expression |
|---|---|
| 3jaod | ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jaod.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 3jaod.2 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
| 3 | 3jaod.3 | . 2 ⊢ (𝜑 → (𝜏 → 𝜒)) | |
| 4 | 3jao 1335 | . 2 ⊢ (((𝜓 → 𝜒) ∧ (𝜃 → 𝜒) ∧ (𝜏 → 𝜒)) → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1271 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ w3o 1001 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 |
| This theorem is referenced by: 3jaodan 1340 3jaao 1342 issod 4409 nnawordex 6673 exmidontri2or 7424 addlocprlem 7718 nqprloc 7728 ltexprlemrl 7793 aptiprleml 7822 aptiprlemu 7823 elnn0z 9455 zaddcl 9482 zletric 9486 zlelttric 9487 zltnle 9488 zdceq 9518 zdcle 9519 zdclt 9520 nn01to3 9808 xposdif 10074 fzdcel 10232 qletric 10456 qlelttric 10457 qltnle 10458 qdceq 10459 qdclt 10460 frec2uzlt2d 10621 perfectlem2 15668 triap 16356 tridceq 16383 |
| Copyright terms: Public domain | W3C validator |