Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3jaod | GIF version |
Description: Disjunction of 3 antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
3jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
3jaod.3 | ⊢ (𝜑 → (𝜏 → 𝜒)) |
Ref | Expression |
---|---|
3jaod | ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaod.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 3jaod.2 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
3 | 3jaod.3 | . 2 ⊢ (𝜑 → (𝜏 → 𝜒)) | |
4 | 3jao 1296 | . 2 ⊢ (((𝜓 → 𝜒) ∧ (𝜃 → 𝜒) ∧ (𝜏 → 𝜒)) → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) | |
5 | 1, 2, 3, 4 | syl3anc 1233 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ w3o 972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 |
This theorem is referenced by: 3jaodan 1301 3jaao 1303 issod 4304 nnawordex 6508 exmidontri2or 7220 addlocprlem 7497 nqprloc 7507 ltexprlemrl 7572 aptiprleml 7601 aptiprlemu 7602 elnn0z 9225 zaddcl 9252 zletric 9256 zlelttric 9257 zltnle 9258 zdceq 9287 zdcle 9288 zdclt 9289 nn01to3 9576 xposdif 9839 fzdcel 9996 qletric 10200 qlelttric 10201 qltnle 10202 qdceq 10203 frec2uzlt2d 10360 triap 14061 tridceq 14088 |
Copyright terms: Public domain | W3C validator |