![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3jaod | GIF version |
Description: Disjunction of 3 antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
3jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
3jaod.3 | ⊢ (𝜑 → (𝜏 → 𝜒)) |
Ref | Expression |
---|---|
3jaod | ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaod.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 3jaod.2 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
3 | 3jaod.3 | . 2 ⊢ (𝜑 → (𝜏 → 𝜒)) | |
4 | 3jao 1312 | . 2 ⊢ (((𝜓 → 𝜒) ∧ (𝜃 → 𝜒) ∧ (𝜏 → 𝜒)) → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) | |
5 | 1, 2, 3, 4 | syl3anc 1249 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ w3o 979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 |
This theorem is referenced by: 3jaodan 1317 3jaao 1319 issod 4350 nnawordex 6582 exmidontri2or 7303 addlocprlem 7595 nqprloc 7605 ltexprlemrl 7670 aptiprleml 7699 aptiprlemu 7700 elnn0z 9330 zaddcl 9357 zletric 9361 zlelttric 9362 zltnle 9363 zdceq 9392 zdcle 9393 zdclt 9394 nn01to3 9682 xposdif 9948 fzdcel 10106 qletric 10311 qlelttric 10312 qltnle 10313 qdceq 10314 qdclt 10315 frec2uzlt2d 10475 triap 15519 tridceq 15546 |
Copyright terms: Public domain | W3C validator |