Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3jaod | GIF version |
Description: Disjunction of 3 antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
3jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
3jaod.3 | ⊢ (𝜑 → (𝜏 → 𝜒)) |
Ref | Expression |
---|---|
3jaod | ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaod.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 3jaod.2 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
3 | 3jaod.3 | . 2 ⊢ (𝜑 → (𝜏 → 𝜒)) | |
4 | 3jao 1280 | . 2 ⊢ (((𝜓 → 𝜒) ∧ (𝜃 → 𝜒) ∧ (𝜏 → 𝜒)) → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) | |
5 | 1, 2, 3, 4 | syl3anc 1217 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ w3o 962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 |
This theorem is referenced by: 3jaodan 1285 3jaao 1287 issod 4274 nnawordex 6464 exmidontri2or 7157 addlocprlem 7434 nqprloc 7444 ltexprlemrl 7509 aptiprleml 7538 aptiprlemu 7539 elnn0z 9159 zaddcl 9186 zletric 9190 zlelttric 9191 zltnle 9192 zdceq 9218 zdcle 9219 zdclt 9220 nn01to3 9504 xposdif 9764 fzdcel 9920 qletric 10121 qlelttric 10122 qltnle 10123 qdceq 10124 frec2uzlt2d 10281 triap 13541 tridceq 13568 |
Copyright terms: Public domain | W3C validator |