ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3jaod GIF version

Theorem 3jaod 1316
Description: Disjunction of 3 antecedents (deduction). (Contributed by NM, 14-Oct-2005.)
Hypotheses
Ref Expression
3jaod.1 (𝜑 → (𝜓𝜒))
3jaod.2 (𝜑 → (𝜃𝜒))
3jaod.3 (𝜑 → (𝜏𝜒))
Assertion
Ref Expression
3jaod (𝜑 → ((𝜓𝜃𝜏) → 𝜒))

Proof of Theorem 3jaod
StepHypRef Expression
1 3jaod.1 . 2 (𝜑 → (𝜓𝜒))
2 3jaod.2 . 2 (𝜑 → (𝜃𝜒))
3 3jaod.3 . 2 (𝜑 → (𝜏𝜒))
4 3jao 1313 . 2 (((𝜓𝜒) ∧ (𝜃𝜒) ∧ (𝜏𝜒)) → ((𝜓𝜃𝜏) → 𝜒))
51, 2, 3, 4syl3anc 1249 1 (𝜑 → ((𝜓𝜃𝜏) → 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982
This theorem is referenced by:  3jaodan  1318  3jaao  1320  issod  4365  nnawordex  6614  exmidontri2or  7354  addlocprlem  7647  nqprloc  7657  ltexprlemrl  7722  aptiprleml  7751  aptiprlemu  7752  elnn0z  9384  zaddcl  9411  zletric  9415  zlelttric  9416  zltnle  9417  zdceq  9447  zdcle  9448  zdclt  9449  nn01to3  9737  xposdif  10003  fzdcel  10161  qletric  10382  qlelttric  10383  qltnle  10384  qdceq  10385  qdclt  10386  frec2uzlt2d  10547  perfectlem2  15414  triap  15901  tridceq  15928
  Copyright terms: Public domain W3C validator