ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3jaod GIF version

Theorem 3jaod 1338
Description: Disjunction of 3 antecedents (deduction). (Contributed by NM, 14-Oct-2005.)
Hypotheses
Ref Expression
3jaod.1 (𝜑 → (𝜓𝜒))
3jaod.2 (𝜑 → (𝜃𝜒))
3jaod.3 (𝜑 → (𝜏𝜒))
Assertion
Ref Expression
3jaod (𝜑 → ((𝜓𝜃𝜏) → 𝜒))

Proof of Theorem 3jaod
StepHypRef Expression
1 3jaod.1 . 2 (𝜑 → (𝜓𝜒))
2 3jaod.2 . 2 (𝜑 → (𝜃𝜒))
3 3jaod.3 . 2 (𝜑 → (𝜏𝜒))
4 3jao 1335 . 2 (((𝜓𝜒) ∧ (𝜃𝜒) ∧ (𝜏𝜒)) → ((𝜓𝜃𝜏) → 𝜒))
51, 2, 3, 4syl3anc 1271 1 (𝜑 → ((𝜓𝜃𝜏) → 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 1001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004
This theorem is referenced by:  3jaodan  1340  3jaao  1342  issod  4409  nnawordex  6673  exmidontri2or  7424  addlocprlem  7718  nqprloc  7728  ltexprlemrl  7793  aptiprleml  7822  aptiprlemu  7823  elnn0z  9455  zaddcl  9482  zletric  9486  zlelttric  9487  zltnle  9488  zdceq  9518  zdcle  9519  zdclt  9520  nn01to3  9808  xposdif  10074  fzdcel  10232  qletric  10456  qlelttric  10457  qltnle  10458  qdceq  10459  qdclt  10460  frec2uzlt2d  10621  perfectlem2  15668  triap  16356  tridceq  16383
  Copyright terms: Public domain W3C validator