| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3jaod | GIF version | ||
| Description: Disjunction of 3 antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| 3jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 3jaod.3 | ⊢ (𝜑 → (𝜏 → 𝜒)) |
| Ref | Expression |
|---|---|
| 3jaod | ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jaod.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 3jaod.2 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
| 3 | 3jaod.3 | . 2 ⊢ (𝜑 → (𝜏 → 𝜒)) | |
| 4 | 3jao 1314 | . 2 ⊢ (((𝜓 → 𝜒) ∧ (𝜃 → 𝜒) ∧ (𝜏 → 𝜒)) → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1250 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ w3o 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 |
| This theorem is referenced by: 3jaodan 1319 3jaao 1321 issod 4379 nnawordex 6633 exmidontri2or 7384 addlocprlem 7678 nqprloc 7688 ltexprlemrl 7753 aptiprleml 7782 aptiprlemu 7783 elnn0z 9415 zaddcl 9442 zletric 9446 zlelttric 9447 zltnle 9448 zdceq 9478 zdcle 9479 zdclt 9480 nn01to3 9768 xposdif 10034 fzdcel 10192 qletric 10416 qlelttric 10417 qltnle 10418 qdceq 10419 qdclt 10420 frec2uzlt2d 10581 perfectlem2 15557 triap 16140 tridceq 16167 |
| Copyright terms: Public domain | W3C validator |