ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3jaod GIF version

Theorem 3jaod 1315
Description: Disjunction of 3 antecedents (deduction). (Contributed by NM, 14-Oct-2005.)
Hypotheses
Ref Expression
3jaod.1 (𝜑 → (𝜓𝜒))
3jaod.2 (𝜑 → (𝜃𝜒))
3jaod.3 (𝜑 → (𝜏𝜒))
Assertion
Ref Expression
3jaod (𝜑 → ((𝜓𝜃𝜏) → 𝜒))

Proof of Theorem 3jaod
StepHypRef Expression
1 3jaod.1 . 2 (𝜑 → (𝜓𝜒))
2 3jaod.2 . 2 (𝜑 → (𝜃𝜒))
3 3jaod.3 . 2 (𝜑 → (𝜏𝜒))
4 3jao 1312 . 2 (((𝜓𝜒) ∧ (𝜃𝜒) ∧ (𝜏𝜒)) → ((𝜓𝜃𝜏) → 𝜒))
51, 2, 3, 4syl3anc 1249 1 (𝜑 → ((𝜓𝜃𝜏) → 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982
This theorem is referenced by:  3jaodan  1317  3jaao  1319  issod  4355  nnawordex  6596  exmidontri2or  7326  addlocprlem  7619  nqprloc  7629  ltexprlemrl  7694  aptiprleml  7723  aptiprlemu  7724  elnn0z  9356  zaddcl  9383  zletric  9387  zlelttric  9388  zltnle  9389  zdceq  9418  zdcle  9419  zdclt  9420  nn01to3  9708  xposdif  9974  fzdcel  10132  qletric  10348  qlelttric  10349  qltnle  10350  qdceq  10351  qdclt  10352  frec2uzlt2d  10513  perfectlem2  15320  triap  15760  tridceq  15787
  Copyright terms: Public domain W3C validator