ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3jaod GIF version

Theorem 3jaod 1317
Description: Disjunction of 3 antecedents (deduction). (Contributed by NM, 14-Oct-2005.)
Hypotheses
Ref Expression
3jaod.1 (𝜑 → (𝜓𝜒))
3jaod.2 (𝜑 → (𝜃𝜒))
3jaod.3 (𝜑 → (𝜏𝜒))
Assertion
Ref Expression
3jaod (𝜑 → ((𝜓𝜃𝜏) → 𝜒))

Proof of Theorem 3jaod
StepHypRef Expression
1 3jaod.1 . 2 (𝜑 → (𝜓𝜒))
2 3jaod.2 . 2 (𝜑 → (𝜃𝜒))
3 3jaod.3 . 2 (𝜑 → (𝜏𝜒))
4 3jao 1314 . 2 (((𝜓𝜒) ∧ (𝜃𝜒) ∧ (𝜏𝜒)) → ((𝜓𝜃𝜏) → 𝜒))
51, 2, 3, 4syl3anc 1250 1 (𝜑 → ((𝜓𝜃𝜏) → 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983
This theorem is referenced by:  3jaodan  1319  3jaao  1321  issod  4379  nnawordex  6633  exmidontri2or  7384  addlocprlem  7678  nqprloc  7688  ltexprlemrl  7753  aptiprleml  7782  aptiprlemu  7783  elnn0z  9415  zaddcl  9442  zletric  9446  zlelttric  9447  zltnle  9448  zdceq  9478  zdcle  9479  zdclt  9480  nn01to3  9768  xposdif  10034  fzdcel  10192  qletric  10416  qlelttric  10417  qltnle  10418  qdceq  10419  qdclt  10420  frec2uzlt2d  10581  perfectlem2  15557  triap  16140  tridceq  16167
  Copyright terms: Public domain W3C validator