| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3jaod | GIF version | ||
| Description: Disjunction of 3 antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| 3jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 3jaod.3 | ⊢ (𝜑 → (𝜏 → 𝜒)) |
| Ref | Expression |
|---|---|
| 3jaod | ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jaod.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 3jaod.2 | . 2 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
| 3 | 3jaod.3 | . 2 ⊢ (𝜑 → (𝜏 → 𝜒)) | |
| 4 | 3jao 1314 | . 2 ⊢ (((𝜓 → 𝜒) ∧ (𝜃 → 𝜒) ∧ (𝜏 → 𝜒)) → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1250 | 1 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ w3o 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 |
| This theorem is referenced by: 3jaodan 1319 3jaao 1321 issod 4366 nnawordex 6615 exmidontri2or 7355 addlocprlem 7648 nqprloc 7658 ltexprlemrl 7723 aptiprleml 7752 aptiprlemu 7753 elnn0z 9385 zaddcl 9412 zletric 9416 zlelttric 9417 zltnle 9418 zdceq 9448 zdcle 9449 zdclt 9450 nn01to3 9738 xposdif 10004 fzdcel 10162 qletric 10384 qlelttric 10385 qltnle 10386 qdceq 10387 qdclt 10388 frec2uzlt2d 10549 perfectlem2 15472 triap 15968 tridceq 15995 |
| Copyright terms: Public domain | W3C validator |