ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3jaod GIF version

Theorem 3jaod 1315
Description: Disjunction of 3 antecedents (deduction). (Contributed by NM, 14-Oct-2005.)
Hypotheses
Ref Expression
3jaod.1 (𝜑 → (𝜓𝜒))
3jaod.2 (𝜑 → (𝜃𝜒))
3jaod.3 (𝜑 → (𝜏𝜒))
Assertion
Ref Expression
3jaod (𝜑 → ((𝜓𝜃𝜏) → 𝜒))

Proof of Theorem 3jaod
StepHypRef Expression
1 3jaod.1 . 2 (𝜑 → (𝜓𝜒))
2 3jaod.2 . 2 (𝜑 → (𝜃𝜒))
3 3jaod.3 . 2 (𝜑 → (𝜏𝜒))
4 3jao 1312 . 2 (((𝜓𝜒) ∧ (𝜃𝜒) ∧ (𝜏𝜒)) → ((𝜓𝜃𝜏) → 𝜒))
51, 2, 3, 4syl3anc 1249 1 (𝜑 → ((𝜓𝜃𝜏) → 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  w3o 979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982
This theorem is referenced by:  3jaodan  1317  3jaao  1319  issod  4355  nnawordex  6596  exmidontri2or  7328  addlocprlem  7621  nqprloc  7631  ltexprlemrl  7696  aptiprleml  7725  aptiprlemu  7726  elnn0z  9358  zaddcl  9385  zletric  9389  zlelttric  9390  zltnle  9391  zdceq  9420  zdcle  9421  zdclt  9422  nn01to3  9710  xposdif  9976  fzdcel  10134  qletric  10350  qlelttric  10351  qltnle  10352  qdceq  10353  qdclt  10354  frec2uzlt2d  10515  perfectlem2  15344  triap  15786  tridceq  15813
  Copyright terms: Public domain W3C validator