| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3jcad | GIF version | ||
| Description: Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005.) | 
| Ref | Expression | 
|---|---|
| 3jcad.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) | 
| 3jcad.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) | 
| 3jcad.3 | ⊢ (𝜑 → (𝜓 → 𝜏)) | 
| Ref | Expression | 
|---|---|
| 3jcad | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃 ∧ 𝜏))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3jcad.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | imp 124 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | 
| 3 | 3jcad.2 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
| 4 | 3 | imp 124 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | 
| 5 | 3jcad.3 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜏)) | |
| 6 | 5 | imp 124 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) | 
| 7 | 2, 4, 6 | 3jca 1179 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜃 ∧ 𝜏)) | 
| 8 | 7 | ex 115 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃 ∧ 𝜏))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: ixxssixx 9977 iccid 10000 fzen 10118 lmodprop2d 13904 | 
| Copyright terms: Public domain | W3C validator |