Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3jcad | GIF version |
Description: Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005.) |
Ref | Expression |
---|---|
3jcad.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3jcad.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
3jcad.3 | ⊢ (𝜑 → (𝜓 → 𝜏)) |
Ref | Expression |
---|---|
3jcad | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃 ∧ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jcad.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | imp 123 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
3 | 3jcad.2 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
4 | 3 | imp 123 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
5 | 3jcad.3 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜏)) | |
6 | 5 | imp 123 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜏) |
7 | 2, 4, 6 | 3jca 1167 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜃 ∧ 𝜏)) |
8 | 7 | ex 114 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃 ∧ 𝜏))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: ixxssixx 9838 iccid 9861 fzen 9978 |
Copyright terms: Public domain | W3C validator |