Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3jcad | Unicode version |
Description: Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005.) |
Ref | Expression |
---|---|
3jcad.1 | |
3jcad.2 | |
3jcad.3 |
Ref | Expression |
---|---|
3jcad |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jcad.1 | . . . 4 | |
2 | 1 | imp 123 | . . 3 |
3 | 3jcad.2 | . . . 4 | |
4 | 3 | imp 123 | . . 3 |
5 | 3jcad.3 | . . . 4 | |
6 | 5 | imp 123 | . . 3 |
7 | 2, 4, 6 | 3jca 1167 | . 2 |
8 | 7 | ex 114 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: ixxssixx 9838 iccid 9861 fzen 9978 |
Copyright terms: Public domain | W3C validator |