![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ixxssixx | GIF version |
Description: An interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
ixxssixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
ixx.2 | ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑈𝑦)}) |
ixx.3 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴𝑅𝑤 → 𝐴𝑇𝑤)) |
ixx.4 | ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤𝑆𝐵 → 𝑤𝑈𝐵)) |
Ref | Expression |
---|---|
ixxssixx | ⊢ (𝐴𝑂𝐵) ⊆ (𝐴𝑃𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixxssixx.1 | . . . 4 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
2 | 1 | elmpocl 6113 | . . 3 ⊢ (𝑤 ∈ (𝐴𝑂𝐵) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
3 | simp1 999 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵) → 𝑤 ∈ ℝ*) | |
4 | 3 | a1i 9 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵) → 𝑤 ∈ ℝ*)) |
5 | simpl 109 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐴 ∈ ℝ*) | |
6 | 3simpa 996 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵) → (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤)) | |
7 | ixx.3 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴𝑅𝑤 → 𝐴𝑇𝑤)) | |
8 | 7 | expimpd 363 | . . . . . 6 ⊢ (𝐴 ∈ ℝ* → ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤) → 𝐴𝑇𝑤)) |
9 | 5, 6, 8 | syl2im 38 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵) → 𝐴𝑇𝑤)) |
10 | simpr 110 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → 𝐵 ∈ ℝ*) | |
11 | 3simpb 997 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵) → (𝑤 ∈ ℝ* ∧ 𝑤𝑆𝐵)) | |
12 | ixx.4 | . . . . . . . 8 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤𝑆𝐵 → 𝑤𝑈𝐵)) | |
13 | 12 | ancoms 268 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝑤𝑆𝐵 → 𝑤𝑈𝐵)) |
14 | 13 | expimpd 363 | . . . . . 6 ⊢ (𝐵 ∈ ℝ* → ((𝑤 ∈ ℝ* ∧ 𝑤𝑆𝐵) → 𝑤𝑈𝐵)) |
15 | 10, 11, 14 | syl2im 38 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵) → 𝑤𝑈𝐵)) |
16 | 4, 9, 15 | 3jcad 1180 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵) → (𝑤 ∈ ℝ* ∧ 𝐴𝑇𝑤 ∧ 𝑤𝑈𝐵))) |
17 | 1 | elixx1 9963 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ* ∧ 𝐴𝑅𝑤 ∧ 𝑤𝑆𝐵))) |
18 | ixx.2 | . . . . 5 ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑈𝑦)}) | |
19 | 18 | elixx1 9963 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑃𝐵) ↔ (𝑤 ∈ ℝ* ∧ 𝐴𝑇𝑤 ∧ 𝑤𝑈𝐵))) |
20 | 16, 17, 19 | 3imtr4d 203 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) → 𝑤 ∈ (𝐴𝑃𝐵))) |
21 | 2, 20 | mpcom 36 | . 2 ⊢ (𝑤 ∈ (𝐴𝑂𝐵) → 𝑤 ∈ (𝐴𝑃𝐵)) |
22 | 21 | ssriv 3183 | 1 ⊢ (𝐴𝑂𝐵) ⊆ (𝐴𝑃𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 {crab 2476 ⊆ wss 3153 class class class wbr 4029 (class class class)co 5918 ∈ cmpo 5920 ℝ*cxr 8053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 |
This theorem is referenced by: ioossicc 10025 icossicc 10026 iocssicc 10027 ioossico 10028 |
Copyright terms: Public domain | W3C validator |