Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxssixx GIF version

Theorem ixxssixx 9708
 Description: An interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
Hypotheses
Ref Expression
ixxssixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
ixx.2 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})
ixx.3 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑅𝑤𝐴𝑇𝑤))
ixx.4 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝑈𝐵))
Assertion
Ref Expression
ixxssixx (𝐴𝑂𝐵) ⊆ (𝐴𝑃𝐵)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝑂,𝑥   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝑃   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑥,𝑈,𝑦,𝑧
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑧)   𝑅(𝑤)   𝑆(𝑤)   𝑇(𝑤)   𝑈(𝑤)   𝑂(𝑦,𝑧)

Proof of Theorem ixxssixx
StepHypRef Expression
1 ixxssixx.1 . . . 4 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
21elmpocl 5971 . . 3 (𝑤 ∈ (𝐴𝑂𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
3 simp1 981 . . . . . 6 ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → 𝑤 ∈ ℝ*)
43a1i 9 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → 𝑤 ∈ ℝ*))
5 simpl 108 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ∈ ℝ*)
6 3simpa 978 . . . . . 6 ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → (𝑤 ∈ ℝ*𝐴𝑅𝑤))
7 ixx.3 . . . . . . 7 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑅𝑤𝐴𝑇𝑤))
87expimpd 360 . . . . . 6 (𝐴 ∈ ℝ* → ((𝑤 ∈ ℝ*𝐴𝑅𝑤) → 𝐴𝑇𝑤))
95, 6, 8syl2im 38 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → 𝐴𝑇𝑤))
10 simpr 109 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵 ∈ ℝ*)
11 3simpb 979 . . . . . 6 ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → (𝑤 ∈ ℝ*𝑤𝑆𝐵))
12 ixx.4 . . . . . . . 8 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝑈𝐵))
1312ancoms 266 . . . . . . 7 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝑈𝐵))
1413expimpd 360 . . . . . 6 (𝐵 ∈ ℝ* → ((𝑤 ∈ ℝ*𝑤𝑆𝐵) → 𝑤𝑈𝐵))
1510, 11, 14syl2im 38 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → 𝑤𝑈𝐵))
164, 9, 153jcad 1162 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → (𝑤 ∈ ℝ*𝐴𝑇𝑤𝑤𝑈𝐵)))
171elixx1 9703 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
18 ixx.2 . . . . 5 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})
1918elixx1 9703 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑃𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑇𝑤𝑤𝑈𝐵)))
2016, 17, 193imtr4d 202 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) → 𝑤 ∈ (𝐴𝑃𝐵)))
212, 20mpcom 36 . 2 (𝑤 ∈ (𝐴𝑂𝐵) → 𝑤 ∈ (𝐴𝑃𝐵))
2221ssriv 3101 1 (𝐴𝑂𝐵) ⊆ (𝐴𝑃𝐵)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∧ w3a 962   = wceq 1331   ∈ wcel 1480  {crab 2420   ⊆ wss 3071   class class class wbr 3932  (class class class)co 5777   ∈ cmpo 5779  ℝ*cxr 7818 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4049  ax-pow 4101  ax-pr 4134  ax-un 4358  ax-setind 4455  ax-cnex 7730  ax-resscn 7731 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3740  df-br 3933  df-opab 3993  df-id 4218  df-xp 4548  df-rel 4549  df-cnv 4550  df-co 4551  df-dm 4552  df-iota 5091  df-fun 5128  df-fv 5134  df-ov 5780  df-oprab 5781  df-mpo 5782  df-pnf 7821  df-mnf 7822  df-xr 7823 This theorem is referenced by:  ioossicc  9765  icossicc  9766  iocssicc  9767  ioossico  9768
 Copyright terms: Public domain W3C validator