ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxssixx GIF version

Theorem ixxssixx 9859
Description: An interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
Hypotheses
Ref Expression
ixxssixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
ixx.2 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})
ixx.3 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑅𝑤𝐴𝑇𝑤))
ixx.4 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝑈𝐵))
Assertion
Ref Expression
ixxssixx (𝐴𝑂𝐵) ⊆ (𝐴𝑃𝐵)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝑂,𝑥   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝑃   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑥,𝑈,𝑦,𝑧
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑧)   𝑅(𝑤)   𝑆(𝑤)   𝑇(𝑤)   𝑈(𝑤)   𝑂(𝑦,𝑧)

Proof of Theorem ixxssixx
StepHypRef Expression
1 ixxssixx.1 . . . 4 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
21elmpocl 6047 . . 3 (𝑤 ∈ (𝐴𝑂𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
3 simp1 992 . . . . . 6 ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → 𝑤 ∈ ℝ*)
43a1i 9 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → 𝑤 ∈ ℝ*))
5 simpl 108 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ∈ ℝ*)
6 3simpa 989 . . . . . 6 ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → (𝑤 ∈ ℝ*𝐴𝑅𝑤))
7 ixx.3 . . . . . . 7 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑅𝑤𝐴𝑇𝑤))
87expimpd 361 . . . . . 6 (𝐴 ∈ ℝ* → ((𝑤 ∈ ℝ*𝐴𝑅𝑤) → 𝐴𝑇𝑤))
95, 6, 8syl2im 38 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → 𝐴𝑇𝑤))
10 simpr 109 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵 ∈ ℝ*)
11 3simpb 990 . . . . . 6 ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → (𝑤 ∈ ℝ*𝑤𝑆𝐵))
12 ixx.4 . . . . . . . 8 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝑈𝐵))
1312ancoms 266 . . . . . . 7 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝑈𝐵))
1413expimpd 361 . . . . . 6 (𝐵 ∈ ℝ* → ((𝑤 ∈ ℝ*𝑤𝑆𝐵) → 𝑤𝑈𝐵))
1510, 11, 14syl2im 38 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → 𝑤𝑈𝐵))
164, 9, 153jcad 1173 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → (𝑤 ∈ ℝ*𝐴𝑇𝑤𝑤𝑈𝐵)))
171elixx1 9854 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
18 ixx.2 . . . . 5 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})
1918elixx1 9854 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑃𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑇𝑤𝑤𝑈𝐵)))
2016, 17, 193imtr4d 202 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) → 𝑤 ∈ (𝐴𝑃𝐵)))
212, 20mpcom 36 . 2 (𝑤 ∈ (𝐴𝑂𝐵) → 𝑤 ∈ (𝐴𝑃𝐵))
2221ssriv 3151 1 (𝐴𝑂𝐵) ⊆ (𝐴𝑃𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973   = wceq 1348  wcel 2141  {crab 2452  wss 3121   class class class wbr 3989  (class class class)co 5853  cmpo 5855  *cxr 7953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958
This theorem is referenced by:  ioossicc  9916  icossicc  9917  iocssicc  9918  ioossico  9919
  Copyright terms: Public domain W3C validator