ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixxssixx GIF version

Theorem ixxssixx 9829
Description: An interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
Hypotheses
Ref Expression
ixxssixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
ixx.2 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})
ixx.3 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑅𝑤𝐴𝑇𝑤))
ixx.4 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝑈𝐵))
Assertion
Ref Expression
ixxssixx (𝐴𝑂𝐵) ⊆ (𝐴𝑃𝐵)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝑂,𝑥   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝑃   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧   𝑥,𝑈,𝑦,𝑧
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑧)   𝑅(𝑤)   𝑆(𝑤)   𝑇(𝑤)   𝑈(𝑤)   𝑂(𝑦,𝑧)

Proof of Theorem ixxssixx
StepHypRef Expression
1 ixxssixx.1 . . . 4 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
21elmpocl 6030 . . 3 (𝑤 ∈ (𝐴𝑂𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
3 simp1 986 . . . . . 6 ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → 𝑤 ∈ ℝ*)
43a1i 9 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → 𝑤 ∈ ℝ*))
5 simpl 108 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ∈ ℝ*)
6 3simpa 983 . . . . . 6 ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → (𝑤 ∈ ℝ*𝐴𝑅𝑤))
7 ixx.3 . . . . . . 7 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑅𝑤𝐴𝑇𝑤))
87expimpd 361 . . . . . 6 (𝐴 ∈ ℝ* → ((𝑤 ∈ ℝ*𝐴𝑅𝑤) → 𝐴𝑇𝑤))
95, 6, 8syl2im 38 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → 𝐴𝑇𝑤))
10 simpr 109 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵 ∈ ℝ*)
11 3simpb 984 . . . . . 6 ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → (𝑤 ∈ ℝ*𝑤𝑆𝐵))
12 ixx.4 . . . . . . . 8 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝑈𝐵))
1312ancoms 266 . . . . . . 7 ((𝐵 ∈ ℝ*𝑤 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝑈𝐵))
1413expimpd 361 . . . . . 6 (𝐵 ∈ ℝ* → ((𝑤 ∈ ℝ*𝑤𝑆𝐵) → 𝑤𝑈𝐵))
1510, 11, 14syl2im 38 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → 𝑤𝑈𝐵))
164, 9, 153jcad 1167 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵) → (𝑤 ∈ ℝ*𝐴𝑇𝑤𝑤𝑈𝐵)))
171elixx1 9824 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
18 ixx.2 . . . . 5 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧𝑧𝑈𝑦)})
1918elixx1 9824 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑃𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑇𝑤𝑤𝑈𝐵)))
2016, 17, 193imtr4d 202 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) → 𝑤 ∈ (𝐴𝑃𝐵)))
212, 20mpcom 36 . 2 (𝑤 ∈ (𝐴𝑂𝐵) → 𝑤 ∈ (𝐴𝑃𝐵))
2221ssriv 3141 1 (𝐴𝑂𝐵) ⊆ (𝐴𝑃𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 967   = wceq 1342  wcel 2135  {crab 2446  wss 3111   class class class wbr 3976  (class class class)co 5836  cmpo 5838  *cxr 7923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-opab 4038  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-iota 5147  df-fun 5184  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-pnf 7926  df-mnf 7927  df-xr 7928
This theorem is referenced by:  ioossicc  9886  icossicc  9887  iocssicc  9888  ioossico  9889
  Copyright terms: Public domain W3C validator