ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccid GIF version

Theorem iccid 9882
Description: A closed interval with identical lower and upper bounds is a singleton. (Contributed by Jeff Hankins, 13-Jul-2009.)
Assertion
Ref Expression
iccid (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})

Proof of Theorem iccid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elicc1 9881 . . . 4 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 ∈ (𝐴[,]𝐴) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴)))
21anidms 395 . . 3 (𝐴 ∈ ℝ* → (𝑥 ∈ (𝐴[,]𝐴) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴)))
3 xrlenlt 7984 . . . . . . . 8 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (𝐴𝑥 ↔ ¬ 𝑥 < 𝐴))
4 xrlenlt 7984 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥𝐴 ↔ ¬ 𝐴 < 𝑥))
54ancoms 266 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑥𝐴 ↔ ¬ 𝐴 < 𝑥))
6 xrlttri3 9754 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 = 𝐴 ↔ (¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥)))
76biimprd 157 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ*) → ((¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥) → 𝑥 = 𝐴))
87ancoms 266 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → ((¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥) → 𝑥 = 𝐴))
98expcomd 1434 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (¬ 𝐴 < 𝑥 → (¬ 𝑥 < 𝐴𝑥 = 𝐴)))
105, 9sylbid 149 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑥𝐴 → (¬ 𝑥 < 𝐴𝑥 = 𝐴)))
1110com23 78 . . . . . . . 8 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (¬ 𝑥 < 𝐴 → (𝑥𝐴𝑥 = 𝐴)))
123, 11sylbid 149 . . . . . . 7 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (𝐴𝑥 → (𝑥𝐴𝑥 = 𝐴)))
1312ex 114 . . . . . 6 (𝐴 ∈ ℝ* → (𝑥 ∈ ℝ* → (𝐴𝑥 → (𝑥𝐴𝑥 = 𝐴))))
14133impd 1216 . . . . 5 (𝐴 ∈ ℝ* → ((𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴) → 𝑥 = 𝐴))
15 eleq1a 2242 . . . . . 6 (𝐴 ∈ ℝ* → (𝑥 = 𝐴𝑥 ∈ ℝ*))
16 xrleid 9757 . . . . . . 7 (𝐴 ∈ ℝ*𝐴𝐴)
17 breq2 3993 . . . . . . 7 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
1816, 17syl5ibrcom 156 . . . . . 6 (𝐴 ∈ ℝ* → (𝑥 = 𝐴𝐴𝑥))
19 breq1 3992 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝐴𝐴𝐴))
2016, 19syl5ibrcom 156 . . . . . 6 (𝐴 ∈ ℝ* → (𝑥 = 𝐴𝑥𝐴))
2115, 18, 203jcad 1173 . . . . 5 (𝐴 ∈ ℝ* → (𝑥 = 𝐴 → (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴)))
2214, 21impbid 128 . . . 4 (𝐴 ∈ ℝ* → ((𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴) ↔ 𝑥 = 𝐴))
23 velsn 3600 . . . 4 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
2422, 23bitr4di 197 . . 3 (𝐴 ∈ ℝ* → ((𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴) ↔ 𝑥 ∈ {𝐴}))
252, 24bitrd 187 . 2 (𝐴 ∈ ℝ* → (𝑥 ∈ (𝐴[,]𝐴) ↔ 𝑥 ∈ {𝐴}))
2625eqrdv 2168 1 (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  {csn 3583   class class class wbr 3989  (class class class)co 5853  *cxr 7953   < clt 7954  cle 7955  [,]cicc 9848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-pre-ltirr 7886  ax-pre-apti 7889
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-icc 9852
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator