ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccid GIF version

Theorem iccid 10017
Description: A closed interval with identical lower and upper bounds is a singleton. (Contributed by Jeff Hankins, 13-Jul-2009.)
Assertion
Ref Expression
iccid (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})

Proof of Theorem iccid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elicc1 10016 . . . 4 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 ∈ (𝐴[,]𝐴) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴)))
21anidms 397 . . 3 (𝐴 ∈ ℝ* → (𝑥 ∈ (𝐴[,]𝐴) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴)))
3 xrlenlt 8108 . . . . . . . 8 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (𝐴𝑥 ↔ ¬ 𝑥 < 𝐴))
4 xrlenlt 8108 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥𝐴 ↔ ¬ 𝐴 < 𝑥))
54ancoms 268 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑥𝐴 ↔ ¬ 𝐴 < 𝑥))
6 xrlttri3 9889 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 = 𝐴 ↔ (¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥)))
76biimprd 158 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ*) → ((¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥) → 𝑥 = 𝐴))
87ancoms 268 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → ((¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥) → 𝑥 = 𝐴))
98expcomd 1452 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (¬ 𝐴 < 𝑥 → (¬ 𝑥 < 𝐴𝑥 = 𝐴)))
105, 9sylbid 150 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑥𝐴 → (¬ 𝑥 < 𝐴𝑥 = 𝐴)))
1110com23 78 . . . . . . . 8 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (¬ 𝑥 < 𝐴 → (𝑥𝐴𝑥 = 𝐴)))
123, 11sylbid 150 . . . . . . 7 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (𝐴𝑥 → (𝑥𝐴𝑥 = 𝐴)))
1312ex 115 . . . . . 6 (𝐴 ∈ ℝ* → (𝑥 ∈ ℝ* → (𝐴𝑥 → (𝑥𝐴𝑥 = 𝐴))))
14133impd 1223 . . . . 5 (𝐴 ∈ ℝ* → ((𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴) → 𝑥 = 𝐴))
15 eleq1a 2268 . . . . . 6 (𝐴 ∈ ℝ* → (𝑥 = 𝐴𝑥 ∈ ℝ*))
16 xrleid 9892 . . . . . . 7 (𝐴 ∈ ℝ*𝐴𝐴)
17 breq2 4038 . . . . . . 7 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
1816, 17syl5ibrcom 157 . . . . . 6 (𝐴 ∈ ℝ* → (𝑥 = 𝐴𝐴𝑥))
19 breq1 4037 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝐴𝐴𝐴))
2016, 19syl5ibrcom 157 . . . . . 6 (𝐴 ∈ ℝ* → (𝑥 = 𝐴𝑥𝐴))
2115, 18, 203jcad 1180 . . . . 5 (𝐴 ∈ ℝ* → (𝑥 = 𝐴 → (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴)))
2214, 21impbid 129 . . . 4 (𝐴 ∈ ℝ* → ((𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴) ↔ 𝑥 = 𝐴))
23 velsn 3640 . . . 4 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
2422, 23bitr4di 198 . . 3 (𝐴 ∈ ℝ* → ((𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴) ↔ 𝑥 ∈ {𝐴}))
252, 24bitrd 188 . 2 (𝐴 ∈ ℝ* → (𝑥 ∈ (𝐴[,]𝐴) ↔ 𝑥 ∈ {𝐴}))
2625eqrdv 2194 1 (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  {csn 3623   class class class wbr 4034  (class class class)co 5925  *cxr 8077   < clt 8078  cle 8079  [,]cicc 9983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-pre-ltirr 8008  ax-pre-apti 8011
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-icc 9987
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator