ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccid GIF version

Theorem iccid 9991
Description: A closed interval with identical lower and upper bounds is a singleton. (Contributed by Jeff Hankins, 13-Jul-2009.)
Assertion
Ref Expression
iccid (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})

Proof of Theorem iccid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elicc1 9990 . . . 4 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 ∈ (𝐴[,]𝐴) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴)))
21anidms 397 . . 3 (𝐴 ∈ ℝ* → (𝑥 ∈ (𝐴[,]𝐴) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴)))
3 xrlenlt 8084 . . . . . . . 8 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (𝐴𝑥 ↔ ¬ 𝑥 < 𝐴))
4 xrlenlt 8084 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥𝐴 ↔ ¬ 𝐴 < 𝑥))
54ancoms 268 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑥𝐴 ↔ ¬ 𝐴 < 𝑥))
6 xrlttri3 9863 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ*) → (𝑥 = 𝐴 ↔ (¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥)))
76biimprd 158 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ*) → ((¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥) → 𝑥 = 𝐴))
87ancoms 268 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → ((¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥) → 𝑥 = 𝐴))
98expcomd 1452 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (¬ 𝐴 < 𝑥 → (¬ 𝑥 < 𝐴𝑥 = 𝐴)))
105, 9sylbid 150 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑥𝐴 → (¬ 𝑥 < 𝐴𝑥 = 𝐴)))
1110com23 78 . . . . . . . 8 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (¬ 𝑥 < 𝐴 → (𝑥𝐴𝑥 = 𝐴)))
123, 11sylbid 150 . . . . . . 7 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (𝐴𝑥 → (𝑥𝐴𝑥 = 𝐴)))
1312ex 115 . . . . . 6 (𝐴 ∈ ℝ* → (𝑥 ∈ ℝ* → (𝐴𝑥 → (𝑥𝐴𝑥 = 𝐴))))
14133impd 1223 . . . . 5 (𝐴 ∈ ℝ* → ((𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴) → 𝑥 = 𝐴))
15 eleq1a 2265 . . . . . 6 (𝐴 ∈ ℝ* → (𝑥 = 𝐴𝑥 ∈ ℝ*))
16 xrleid 9866 . . . . . . 7 (𝐴 ∈ ℝ*𝐴𝐴)
17 breq2 4033 . . . . . . 7 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
1816, 17syl5ibrcom 157 . . . . . 6 (𝐴 ∈ ℝ* → (𝑥 = 𝐴𝐴𝑥))
19 breq1 4032 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝐴𝐴𝐴))
2016, 19syl5ibrcom 157 . . . . . 6 (𝐴 ∈ ℝ* → (𝑥 = 𝐴𝑥𝐴))
2115, 18, 203jcad 1180 . . . . 5 (𝐴 ∈ ℝ* → (𝑥 = 𝐴 → (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴)))
2214, 21impbid 129 . . . 4 (𝐴 ∈ ℝ* → ((𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴) ↔ 𝑥 = 𝐴))
23 velsn 3635 . . . 4 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
2422, 23bitr4di 198 . . 3 (𝐴 ∈ ℝ* → ((𝑥 ∈ ℝ*𝐴𝑥𝑥𝐴) ↔ 𝑥 ∈ {𝐴}))
252, 24bitrd 188 . 2 (𝐴 ∈ ℝ* → (𝑥 ∈ (𝐴[,]𝐴) ↔ 𝑥 ∈ {𝐴}))
2625eqrdv 2191 1 (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  {csn 3618   class class class wbr 4029  (class class class)co 5918  *cxr 8053   < clt 8054  cle 8055  [,]cicc 9957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-pre-ltirr 7984  ax-pre-apti 7987
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-icc 9961
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator