| Step | Hyp | Ref
| Expression |
| 1 | | elicc1 9999 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 ∈
ℝ*) → (𝑥 ∈ (𝐴[,]𝐴) ↔ (𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴))) |
| 2 | 1 | anidms 397 |
. . 3
⊢ (𝐴 ∈ ℝ*
→ (𝑥 ∈ (𝐴[,]𝐴) ↔ (𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴))) |
| 3 | | xrlenlt 8091 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝑥 ∈
ℝ*) → (𝐴 ≤ 𝑥 ↔ ¬ 𝑥 < 𝐴)) |
| 4 | | xrlenlt 8091 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ*
∧ 𝐴 ∈
ℝ*) → (𝑥 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑥)) |
| 5 | 4 | ancoms 268 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ*
∧ 𝑥 ∈
ℝ*) → (𝑥 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑥)) |
| 6 | | xrlttri3 9872 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ*
∧ 𝐴 ∈
ℝ*) → (𝑥 = 𝐴 ↔ (¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥))) |
| 7 | 6 | biimprd 158 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ*
∧ 𝐴 ∈
ℝ*) → ((¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥) → 𝑥 = 𝐴)) |
| 8 | 7 | ancoms 268 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ*
∧ 𝑥 ∈
ℝ*) → ((¬ 𝑥 < 𝐴 ∧ ¬ 𝐴 < 𝑥) → 𝑥 = 𝐴)) |
| 9 | 8 | expcomd 1452 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ*
∧ 𝑥 ∈
ℝ*) → (¬ 𝐴 < 𝑥 → (¬ 𝑥 < 𝐴 → 𝑥 = 𝐴))) |
| 10 | 5, 9 | sylbid 150 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝑥 ∈
ℝ*) → (𝑥 ≤ 𝐴 → (¬ 𝑥 < 𝐴 → 𝑥 = 𝐴))) |
| 11 | 10 | com23 78 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝑥 ∈
ℝ*) → (¬ 𝑥 < 𝐴 → (𝑥 ≤ 𝐴 → 𝑥 = 𝐴))) |
| 12 | 3, 11 | sylbid 150 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝑥 ∈
ℝ*) → (𝐴 ≤ 𝑥 → (𝑥 ≤ 𝐴 → 𝑥 = 𝐴))) |
| 13 | 12 | ex 115 |
. . . . . 6
⊢ (𝐴 ∈ ℝ*
→ (𝑥 ∈
ℝ* → (𝐴 ≤ 𝑥 → (𝑥 ≤ 𝐴 → 𝑥 = 𝐴)))) |
| 14 | 13 | 3impd 1223 |
. . . . 5
⊢ (𝐴 ∈ ℝ*
→ ((𝑥 ∈
ℝ* ∧ 𝐴
≤ 𝑥 ∧ 𝑥 ≤ 𝐴) → 𝑥 = 𝐴)) |
| 15 | | eleq1a 2268 |
. . . . . 6
⊢ (𝐴 ∈ ℝ*
→ (𝑥 = 𝐴 → 𝑥 ∈
ℝ*)) |
| 16 | | xrleid 9875 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ*
→ 𝐴 ≤ 𝐴) |
| 17 | | breq2 4037 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐴)) |
| 18 | 16, 17 | syl5ibrcom 157 |
. . . . . 6
⊢ (𝐴 ∈ ℝ*
→ (𝑥 = 𝐴 → 𝐴 ≤ 𝑥)) |
| 19 | | breq1 4036 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑥 ≤ 𝐴 ↔ 𝐴 ≤ 𝐴)) |
| 20 | 16, 19 | syl5ibrcom 157 |
. . . . . 6
⊢ (𝐴 ∈ ℝ*
→ (𝑥 = 𝐴 → 𝑥 ≤ 𝐴)) |
| 21 | 15, 18, 20 | 3jcad 1180 |
. . . . 5
⊢ (𝐴 ∈ ℝ*
→ (𝑥 = 𝐴 → (𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴))) |
| 22 | 14, 21 | impbid 129 |
. . . 4
⊢ (𝐴 ∈ ℝ*
→ ((𝑥 ∈
ℝ* ∧ 𝐴
≤ 𝑥 ∧ 𝑥 ≤ 𝐴) ↔ 𝑥 = 𝐴)) |
| 23 | | velsn 3639 |
. . . 4
⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) |
| 24 | 22, 23 | bitr4di 198 |
. . 3
⊢ (𝐴 ∈ ℝ*
→ ((𝑥 ∈
ℝ* ∧ 𝐴
≤ 𝑥 ∧ 𝑥 ≤ 𝐴) ↔ 𝑥 ∈ {𝐴})) |
| 25 | 2, 24 | bitrd 188 |
. 2
⊢ (𝐴 ∈ ℝ*
→ (𝑥 ∈ (𝐴[,]𝐴) ↔ 𝑥 ∈ {𝐴})) |
| 26 | 25 | eqrdv 2194 |
1
⊢ (𝐴 ∈ ℝ*
→ (𝐴[,]𝐴) = {𝐴}) |