| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbir3an | GIF version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| mpbir3an.1 | ⊢ 𝜓 |
| mpbir3an.2 | ⊢ 𝜒 |
| mpbir3an.3 | ⊢ 𝜃 |
| mpbir3an.4 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| mpbir3an | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir3an.1 | . . 3 ⊢ 𝜓 | |
| 2 | mpbir3an.2 | . . 3 ⊢ 𝜒 | |
| 3 | mpbir3an.3 | . . 3 ⊢ 𝜃 | |
| 4 | 1, 2, 3 | 3pm3.2i 1199 | . 2 ⊢ (𝜓 ∧ 𝜒 ∧ 𝜃) |
| 5 | mpbir3an.4 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 6 | 4, 5 | mpbir 146 | 1 ⊢ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: limon 4605 limom 4706 issmo 6440 xpider 6761 aptap 8805 1eluzge0 9777 2eluzge1 9779 0elunit 10190 1elunit 10191 fz0to3un2pr 10327 4fvwrd4 10344 fzo0to42pr 10434 xnn0nnen 10667 resqrexlemga 11542 fprodge0 12156 fprodge1 12158 sincos1sgn 12284 sincos2sgn 12285 igz 12905 qnnen 13010 strleun 13145 cnsubmlem 14550 cnsubglem 14551 cnsubrglem 14552 sinhalfpilem 15473 sincos4thpi 15522 sincos6thpi 15524 pigt3 15526 2logb9irr 15653 2logb9irrap 15659 |
| Copyright terms: Public domain | W3C validator |