![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbir3an | GIF version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 9-Jan-2015.) |
Ref | Expression |
---|---|
mpbir3an.1 | ⊢ 𝜓 |
mpbir3an.2 | ⊢ 𝜒 |
mpbir3an.3 | ⊢ 𝜃 |
mpbir3an.4 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
mpbir3an | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir3an.1 | . . 3 ⊢ 𝜓 | |
2 | mpbir3an.2 | . . 3 ⊢ 𝜒 | |
3 | mpbir3an.3 | . . 3 ⊢ 𝜃 | |
4 | 1, 2, 3 | 3pm3.2i 1177 | . 2 ⊢ (𝜓 ∧ 𝜒 ∧ 𝜃) |
5 | mpbir3an.4 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
6 | 4, 5 | mpbir 146 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: limon 4545 limom 4646 issmo 6341 xpider 6660 aptap 8669 1eluzge0 9639 2eluzge1 9641 0elunit 10052 1elunit 10053 fz0to3un2pr 10189 4fvwrd4 10206 fzo0to42pr 10287 xnn0nnen 10508 resqrexlemga 11167 fprodge0 11780 fprodge1 11782 sincos1sgn 11908 sincos2sgn 11909 igz 12512 qnnen 12588 strleun 12722 cnfldstr 14049 cnsubmlem 14066 cnsubglem 14067 cnsubrglem 14068 sinhalfpilem 14926 sincos4thpi 14975 sincos6thpi 14977 pigt3 14979 2logb9irr 15103 2logb9irrap 15109 |
Copyright terms: Public domain | W3C validator |