Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpbir3an | GIF version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 9-Jan-2015.) |
Ref | Expression |
---|---|
mpbir3an.1 | ⊢ 𝜓 |
mpbir3an.2 | ⊢ 𝜒 |
mpbir3an.3 | ⊢ 𝜃 |
mpbir3an.4 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
mpbir3an | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir3an.1 | . . 3 ⊢ 𝜓 | |
2 | mpbir3an.2 | . . 3 ⊢ 𝜒 | |
3 | mpbir3an.3 | . . 3 ⊢ 𝜃 | |
4 | 1, 2, 3 | 3pm3.2i 1170 | . 2 ⊢ (𝜓 ∧ 𝜒 ∧ 𝜃) |
5 | mpbir3an.4 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
6 | 4, 5 | mpbir 145 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: limon 4497 limom 4598 issmo 6267 xpider 6584 1eluzge0 9533 2eluzge1 9535 0elunit 9943 1elunit 9944 fz0to3un2pr 10079 4fvwrd4 10096 fzo0to42pr 10176 resqrexlemga 10987 fprodge0 11600 fprodge1 11602 sincos1sgn 11727 sincos2sgn 11728 igz 12326 qnnen 12386 strleun 12507 sinhalfpilem 13506 sincos4thpi 13555 sincos6thpi 13557 pigt3 13559 2logb9irr 13683 2logb9irrap 13689 |
Copyright terms: Public domain | W3C validator |