Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpbir3an | GIF version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 9-Jan-2015.) |
Ref | Expression |
---|---|
mpbir3an.1 | ⊢ 𝜓 |
mpbir3an.2 | ⊢ 𝜒 |
mpbir3an.3 | ⊢ 𝜃 |
mpbir3an.4 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
mpbir3an | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir3an.1 | . . 3 ⊢ 𝜓 | |
2 | mpbir3an.2 | . . 3 ⊢ 𝜒 | |
3 | mpbir3an.3 | . . 3 ⊢ 𝜃 | |
4 | 1, 2, 3 | 3pm3.2i 1165 | . 2 ⊢ (𝜓 ∧ 𝜒 ∧ 𝜃) |
5 | mpbir3an.4 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
6 | 4, 5 | mpbir 145 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: limon 4489 limom 4590 issmo 6252 xpider 6568 1eluzge0 9508 2eluzge1 9510 0elunit 9918 1elunit 9919 fz0to3un2pr 10054 4fvwrd4 10071 fzo0to42pr 10151 resqrexlemga 10961 fprodge0 11574 fprodge1 11576 sincos1sgn 11701 sincos2sgn 11702 igz 12300 qnnen 12360 strleun 12479 sinhalfpilem 13312 sincos4thpi 13361 sincos6thpi 13363 pigt3 13365 2logb9irr 13489 2logb9irrap 13495 |
Copyright terms: Public domain | W3C validator |