| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbir3an | GIF version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| mpbir3an.1 | ⊢ 𝜓 |
| mpbir3an.2 | ⊢ 𝜒 |
| mpbir3an.3 | ⊢ 𝜃 |
| mpbir3an.4 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| mpbir3an | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir3an.1 | . . 3 ⊢ 𝜓 | |
| 2 | mpbir3an.2 | . . 3 ⊢ 𝜒 | |
| 3 | mpbir3an.3 | . . 3 ⊢ 𝜃 | |
| 4 | 1, 2, 3 | 3pm3.2i 1178 | . 2 ⊢ (𝜓 ∧ 𝜒 ∧ 𝜃) |
| 5 | mpbir3an.4 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 6 | 4, 5 | mpbir 146 | 1 ⊢ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: limon 4565 limom 4666 issmo 6381 xpider 6700 aptap 8730 1eluzge0 9702 2eluzge1 9704 0elunit 10115 1elunit 10116 fz0to3un2pr 10252 4fvwrd4 10269 fzo0to42pr 10356 xnn0nnen 10589 resqrexlemga 11378 fprodge0 11992 fprodge1 11994 sincos1sgn 12120 sincos2sgn 12121 igz 12741 qnnen 12846 strleun 12980 cnsubmlem 14384 cnsubglem 14385 cnsubrglem 14386 sinhalfpilem 15307 sincos4thpi 15356 sincos6thpi 15358 pigt3 15360 2logb9irr 15487 2logb9irrap 15493 |
| Copyright terms: Public domain | W3C validator |