| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbir3an | GIF version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| mpbir3an.1 | ⊢ 𝜓 |
| mpbir3an.2 | ⊢ 𝜒 |
| mpbir3an.3 | ⊢ 𝜃 |
| mpbir3an.4 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| mpbir3an | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir3an.1 | . . 3 ⊢ 𝜓 | |
| 2 | mpbir3an.2 | . . 3 ⊢ 𝜒 | |
| 3 | mpbir3an.3 | . . 3 ⊢ 𝜃 | |
| 4 | 1, 2, 3 | 3pm3.2i 1180 | . 2 ⊢ (𝜓 ∧ 𝜒 ∧ 𝜃) |
| 5 | mpbir3an.4 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 6 | 4, 5 | mpbir 146 | 1 ⊢ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∧ w3a 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 985 |
| This theorem is referenced by: limon 4582 limom 4683 issmo 6404 xpider 6723 aptap 8765 1eluzge0 9737 2eluzge1 9739 0elunit 10150 1elunit 10151 fz0to3un2pr 10287 4fvwrd4 10304 fzo0to42pr 10393 xnn0nnen 10626 resqrexlemga 11500 fprodge0 12114 fprodge1 12116 sincos1sgn 12242 sincos2sgn 12243 igz 12863 qnnen 12968 strleun 13103 cnsubmlem 14507 cnsubglem 14508 cnsubrglem 14509 sinhalfpilem 15430 sincos4thpi 15479 sincos6thpi 15481 pigt3 15483 2logb9irr 15610 2logb9irrap 15616 |
| Copyright terms: Public domain | W3C validator |