ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpbir3an GIF version

Theorem mpbir3an 1184
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 9-Jan-2015.)
Hypotheses
Ref Expression
mpbir3an.1 𝜓
mpbir3an.2 𝜒
mpbir3an.3 𝜃
mpbir3an.4 (𝜑 ↔ (𝜓𝜒𝜃))
Assertion
Ref Expression
mpbir3an 𝜑

Proof of Theorem mpbir3an
StepHypRef Expression
1 mpbir3an.1 . . 3 𝜓
2 mpbir3an.2 . . 3 𝜒
3 mpbir3an.3 . . 3 𝜃
41, 2, 33pm3.2i 1180 . 2 (𝜓𝜒𝜃)
5 mpbir3an.4 . 2 (𝜑 ↔ (𝜓𝜒𝜃))
64, 5mpbir 146 1 𝜑
Colors of variables: wff set class
Syntax hints:  wb 105  w3a 983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 985
This theorem is referenced by:  limon  4582  limom  4683  issmo  6404  xpider  6723  aptap  8765  1eluzge0  9737  2eluzge1  9739  0elunit  10150  1elunit  10151  fz0to3un2pr  10287  4fvwrd4  10304  fzo0to42pr  10393  xnn0nnen  10626  resqrexlemga  11500  fprodge0  12114  fprodge1  12116  sincos1sgn  12242  sincos2sgn  12243  igz  12863  qnnen  12968  strleun  13103  cnsubmlem  14507  cnsubglem  14508  cnsubrglem  14509  sinhalfpilem  15430  sincos4thpi  15479  sincos6thpi  15481  pigt3  15483  2logb9irr  15610  2logb9irrap  15616
  Copyright terms: Public domain W3C validator