| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbir3an | GIF version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| mpbir3an.1 | ⊢ 𝜓 |
| mpbir3an.2 | ⊢ 𝜒 |
| mpbir3an.3 | ⊢ 𝜃 |
| mpbir3an.4 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| mpbir3an | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir3an.1 | . . 3 ⊢ 𝜓 | |
| 2 | mpbir3an.2 | . . 3 ⊢ 𝜒 | |
| 3 | mpbir3an.3 | . . 3 ⊢ 𝜃 | |
| 4 | 1, 2, 3 | 3pm3.2i 1177 | . 2 ⊢ (𝜓 ∧ 𝜒 ∧ 𝜃) |
| 5 | mpbir3an.4 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 6 | 4, 5 | mpbir 146 | 1 ⊢ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: limon 4550 limom 4651 issmo 6355 xpider 6674 aptap 8696 1eluzge0 9667 2eluzge1 9669 0elunit 10080 1elunit 10081 fz0to3un2pr 10217 4fvwrd4 10234 fzo0to42pr 10315 xnn0nnen 10548 resqrexlemga 11207 fprodge0 11821 fprodge1 11823 sincos1sgn 11949 sincos2sgn 11950 igz 12570 qnnen 12675 strleun 12809 cnsubmlem 14212 cnsubglem 14213 cnsubrglem 14214 sinhalfpilem 15113 sincos4thpi 15162 sincos6thpi 15164 pigt3 15166 2logb9irr 15293 2logb9irrap 15299 |
| Copyright terms: Public domain | W3C validator |