ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzen GIF version

Theorem fzen 10109
Description: A shifted finite set of sequential integers is equinumerous to the original set. (Contributed by Paul Chapman, 11-Apr-2009.)
Assertion
Ref Expression
fzen ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀...𝑁) ≈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))

Proof of Theorem fzen
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzf 10078 . . . . 5 ...:(ℤ × ℤ)⟶𝒫 ℤ
2 ffn 5403 . . . . 5 (...:(ℤ × ℤ)⟶𝒫 ℤ → ... Fn (ℤ × ℤ))
31, 2ax-mp 5 . . . 4 ... Fn (ℤ × ℤ)
4 fnovex 5951 . . . 4 ((... Fn (ℤ × ℤ) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) ∈ V)
53, 4mp3an1 1335 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) ∈ V)
653adant3 1019 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀...𝑁) ∈ V)
7 simp1 999 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝑀 ∈ ℤ)
8 simp3 1001 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ)
97, 8zaddcld 9443 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 + 𝐾) ∈ ℤ)
10 simp2 1000 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℤ)
1110, 8zaddcld 9443 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ)
12 fnovex 5951 . . . 4 ((... Fn (ℤ × ℤ) ∧ (𝑀 + 𝐾) ∈ ℤ ∧ (𝑁 + 𝐾) ∈ ℤ) → ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∈ V)
133, 12mp3an1 1335 . . 3 (((𝑀 + 𝐾) ∈ ℤ ∧ (𝑁 + 𝐾) ∈ ℤ) → ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∈ V)
149, 11, 13syl2anc 411 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ∈ V)
15 elfz1 10079 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘𝑁)))
1615biimpd 144 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) → (𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘𝑁)))
17163adant3 1019 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) → (𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘𝑁)))
18 zaddcl 9357 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 + 𝐾) ∈ ℤ)
1918expcom 116 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝑘 ∈ ℤ → (𝑘 + 𝐾) ∈ ℤ))
20193ad2ant3 1022 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ ℤ → (𝑘 + 𝐾) ∈ ℤ))
2120adantrd 279 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝑘𝑁)) → (𝑘 + 𝐾) ∈ ℤ))
22 zre 9321 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
23 zre 9321 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
24 zre 9321 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
25 leadd1 8449 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀𝑘 ↔ (𝑀 + 𝐾) ≤ (𝑘 + 𝐾)))
2622, 23, 24, 25syl3an 1291 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝑘 ↔ (𝑀 + 𝐾) ≤ (𝑘 + 𝐾)))
2726biimpd 144 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝑘 → (𝑀 + 𝐾) ≤ (𝑘 + 𝐾)))
2827adantrd 279 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀𝑘𝑘𝑁) → (𝑀 + 𝐾) ≤ (𝑘 + 𝐾)))
29283com23 1211 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀𝑘𝑘𝑁) → (𝑀 + 𝐾) ≤ (𝑘 + 𝐾)))
30293expia 1207 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ ℤ → ((𝑀𝑘𝑘𝑁) → (𝑀 + 𝐾) ≤ (𝑘 + 𝐾))))
3130impd 254 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝑘𝑁)) → (𝑀 + 𝐾) ≤ (𝑘 + 𝐾)))
32313adant2 1018 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝑘𝑁)) → (𝑀 + 𝐾) ≤ (𝑘 + 𝐾)))
33 zre 9321 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
34 leadd1 8449 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑘𝑁 ↔ (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)))
3523, 33, 24, 34syl3an 1291 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘𝑁 ↔ (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)))
3635biimpd 144 . . . . . . . . . . . . 13 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘𝑁 → (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)))
3736adantld 278 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀𝑘𝑘𝑁) → (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)))
38373coml 1212 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀𝑘𝑘𝑁) → (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)))
39383expia 1207 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ ℤ → ((𝑀𝑘𝑘𝑁) → (𝑘 + 𝐾) ≤ (𝑁 + 𝐾))))
4039impd 254 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝑘𝑁)) → (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)))
41403adant1 1017 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝑘𝑁)) → (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)))
4221, 32, 413jcad 1180 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝑘𝑁)) → ((𝑘 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝑘 + 𝐾) ∧ (𝑘 + 𝐾) ≤ (𝑁 + 𝐾))))
43 zaddcl 9357 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 + 𝐾) ∈ ℤ)
44433adant2 1018 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 + 𝐾) ∈ ℤ)
45 zaddcl 9357 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ)
46453adant1 1017 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ)
47 elfz1 10079 . . . . . . . . 9 (((𝑀 + 𝐾) ∈ ℤ ∧ (𝑁 + 𝐾) ∈ ℤ) → ((𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↔ ((𝑘 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝑘 + 𝐾) ∧ (𝑘 + 𝐾) ≤ (𝑁 + 𝐾))))
4844, 46, 47syl2anc 411 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↔ ((𝑘 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝑘 + 𝐾) ∧ (𝑘 + 𝐾) ≤ (𝑁 + 𝐾))))
4948biimprd 158 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (((𝑘 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝑘 + 𝐾) ∧ (𝑘 + 𝐾) ≤ (𝑁 + 𝐾)) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
5042, 49syld 45 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝑘𝑁)) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
5150com12 30 . . . . 5 ((𝑘 ∈ ℤ ∧ (𝑀𝑘𝑘𝑁)) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
52513impb 1201 . . . 4 ((𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
5352com12 30 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘𝑁) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
5417, 53syld 45 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) → (𝑘 + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
55 elfz1 10079 . . . . 5 (((𝑀 + 𝐾) ∈ ℤ ∧ (𝑁 + 𝐾) ∈ ℤ) → (𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↔ (𝑚 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))))
5644, 46, 55syl2anc 411 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↔ (𝑚 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))))
5756biimpd 144 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → (𝑚 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))))
58 zsubcl 9358 . . . . . . . . . . 11 ((𝑚 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚𝐾) ∈ ℤ)
5958expcom 116 . . . . . . . . . 10 (𝐾 ∈ ℤ → (𝑚 ∈ ℤ → (𝑚𝐾) ∈ ℤ))
60593ad2ant3 1022 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 ∈ ℤ → (𝑚𝐾) ∈ ℤ))
6160adantrd 279 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → (𝑚𝐾) ∈ ℤ))
62 zre 9321 . . . . . . . . . . . . . 14 (𝑚 ∈ ℤ → 𝑚 ∈ ℝ)
63 leaddsub 8457 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑚 ∈ ℝ) → ((𝑀 + 𝐾) ≤ 𝑚𝑀 ≤ (𝑚𝐾)))
6422, 24, 62, 63syl3an 1291 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((𝑀 + 𝐾) ≤ 𝑚𝑀 ≤ (𝑚𝐾)))
6564biimpd 144 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑚 ∈ ℤ) → ((𝑀 + 𝐾) ≤ 𝑚𝑀 ≤ (𝑚𝐾)))
6665adantrd 279 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)) → 𝑀 ≤ (𝑚𝐾)))
67663expia 1207 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 ∈ ℤ → (((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)) → 𝑀 ≤ (𝑚𝐾))))
6867impd 254 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → 𝑀 ≤ (𝑚𝐾)))
69683adant2 1018 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → 𝑀 ≤ (𝑚𝐾)))
70 lesubadd 8453 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑚𝐾) ≤ 𝑁𝑚 ≤ (𝑁 + 𝐾)))
7162, 24, 33, 70syl3an 1291 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑚𝐾) ≤ 𝑁𝑚 ≤ (𝑁 + 𝐾)))
7271biimprd 158 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑚 ≤ (𝑁 + 𝐾) → (𝑚𝐾) ≤ 𝑁))
7372adantld 278 . . . . . . . . . . . . 13 ((𝑚 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)) → (𝑚𝐾) ≤ 𝑁))
74733coml 1212 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)) → (𝑚𝐾) ≤ 𝑁))
75743expia 1207 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑚 ∈ ℤ → (((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)) → (𝑚𝐾) ≤ 𝑁)))
7675impd 254 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → (𝑚𝐾) ≤ 𝑁))
7776ancoms 268 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → (𝑚𝐾) ≤ 𝑁))
78773adant1 1017 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → (𝑚𝐾) ≤ 𝑁))
7961, 69, 783jcad 1180 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → ((𝑚𝐾) ∈ ℤ ∧ 𝑀 ≤ (𝑚𝐾) ∧ (𝑚𝐾) ≤ 𝑁)))
80 elfz1 10079 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑚𝐾) ∈ (𝑀...𝑁) ↔ ((𝑚𝐾) ∈ ℤ ∧ 𝑀 ≤ (𝑚𝐾) ∧ (𝑚𝐾) ≤ 𝑁)))
8180biimprd 158 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑚𝐾) ∈ ℤ ∧ 𝑀 ≤ (𝑚𝐾) ∧ (𝑚𝐾) ≤ 𝑁) → (𝑚𝐾) ∈ (𝑀...𝑁)))
82813adant3 1019 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (((𝑚𝐾) ∈ ℤ ∧ 𝑀 ≤ (𝑚𝐾) ∧ (𝑚𝐾) ≤ 𝑁) → (𝑚𝐾) ∈ (𝑀...𝑁)))
8379, 82syld 45 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → (𝑚𝐾) ∈ (𝑀...𝑁)))
8483com12 30 . . . . 5 ((𝑚 ∈ ℤ ∧ ((𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾))) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚𝐾) ∈ (𝑀...𝑁)))
85843impb 1201 . . . 4 ((𝑚 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚𝐾) ∈ (𝑀...𝑁)))
8685com12 30 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)) → (𝑚𝐾) ∈ (𝑀...𝑁)))
8757, 86syld 45 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → (𝑚𝐾) ∈ (𝑀...𝑁)))
8817imp 124 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘𝑁))
8988simp1d 1011 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ ℤ)
9089ex 115 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℤ))
9157imp 124 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑚 ∈ ℤ ∧ (𝑀 + 𝐾) ≤ 𝑚𝑚 ≤ (𝑁 + 𝐾)))
9291simp1d 1011 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝑚 ∈ ℤ)
9392ex 115 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑚 ∈ ℤ))
94 zcn 9322 . . . . . . 7 (𝑚 ∈ ℤ → 𝑚 ∈ ℂ)
95 zcn 9322 . . . . . . 7 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
96 zcn 9322 . . . . . . 7 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
97 subadd 8222 . . . . . . . . 9 ((𝑚 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑚𝐾) = 𝑘 ↔ (𝐾 + 𝑘) = 𝑚))
98 eqcom 2195 . . . . . . . . 9 ((𝑚𝐾) = 𝑘𝑘 = (𝑚𝐾))
99 eqcom 2195 . . . . . . . . 9 ((𝐾 + 𝑘) = 𝑚𝑚 = (𝐾 + 𝑘))
10097, 98, 993bitr3g 222 . . . . . . . 8 ((𝑚 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑘 = (𝑚𝐾) ↔ 𝑚 = (𝐾 + 𝑘)))
101 addcom 8156 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
1021013adant1 1017 . . . . . . . . 9 ((𝑚 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
103102eqeq2d 2205 . . . . . . . 8 ((𝑚 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑚 = (𝐾 + 𝑘) ↔ 𝑚 = (𝑘 + 𝐾)))
104100, 103bitrd 188 . . . . . . 7 ((𝑚 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝑘 = (𝑚𝐾) ↔ 𝑚 = (𝑘 + 𝐾)))
10594, 95, 96, 104syl3an 1291 . . . . . 6 ((𝑚 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 = (𝑚𝐾) ↔ 𝑚 = (𝑘 + 𝐾)))
1061053coml 1212 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑘 = (𝑚𝐾) ↔ 𝑚 = (𝑘 + 𝐾)))
1071063expib 1208 . . . 4 (𝐾 ∈ ℤ → ((𝑘 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑘 = (𝑚𝐾) ↔ 𝑚 = (𝑘 + 𝐾))))
1081073ad2ant3 1022 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑘 = (𝑚𝐾) ↔ 𝑚 = (𝑘 + 𝐾))))
10990, 93, 108syl2and 295 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑘 ∈ (𝑀...𝑁) ∧ 𝑚 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑘 = (𝑚𝐾) ↔ 𝑚 = (𝑘 + 𝐾))))
1106, 14, 54, 87, 109en3d 6823 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀...𝑁) ≈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  Vcvv 2760  𝒫 cpw 3601   class class class wbr 4029   × cxp 4657   Fn wfn 5249  wf 5250  (class class class)co 5918  cen 6792  cc 7870  cr 7871   + caddc 7875  cle 8055  cmin 8190  cz 9317  ...cfz 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-en 6795  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-fz 10075
This theorem is referenced by:  fz01en  10119  frecfzen2  10498  hashfz  10892  mertenslemi1  11678  hashdvds  12359
  Copyright terms: Public domain W3C validator