ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodprop2d GIF version

Theorem lmodprop2d 13537
Description: If two structures have the same components (properties), one is a left module iff the other one is. This version of lmodpropd 13538 also breaks up the components of the scalar ring. (Contributed by Mario Carneiro, 27-Jun-2015.)
Hypotheses
Ref Expression
lmodprop2d.b1 (𝜑𝐵 = (Base‘𝐾))
lmodprop2d.b2 (𝜑𝐵 = (Base‘𝐿))
lmodprop2d.f 𝐹 = (Scalar‘𝐾)
lmodprop2d.g 𝐺 = (Scalar‘𝐿)
lmodprop2d.p1 (𝜑𝑃 = (Base‘𝐹))
lmodprop2d.p2 (𝜑𝑃 = (Base‘𝐺))
lmodprop2d.1 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
lmodprop2d.2 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(+g𝐹)𝑦) = (𝑥(+g𝐺)𝑦))
lmodprop2d.3 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(.r𝐹)𝑦) = (𝑥(.r𝐺)𝑦))
lmodprop2d.4 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
Assertion
Ref Expression
lmodprop2d (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦   𝑥,𝐺,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑃,𝑦

Proof of Theorem lmodprop2d
Dummy variables 𝑟 𝑞 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmodgrp 13483 . . . 4 (𝐾 ∈ LMod → 𝐾 ∈ Grp)
21a1i 9 . . 3 (𝜑 → (𝐾 ∈ LMod → 𝐾 ∈ Grp))
3 eqid 2187 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
4 eqid 2187 . . . . . 6 (+g𝐾) = (+g𝐾)
5 eqid 2187 . . . . . 6 ( ·𝑠𝐾) = ( ·𝑠𝐾)
6 lmodprop2d.f . . . . . 6 𝐹 = (Scalar‘𝐾)
7 eqid 2187 . . . . . 6 (Base‘𝐹) = (Base‘𝐹)
8 eqid 2187 . . . . . 6 (+g𝐹) = (+g𝐹)
9 eqid 2187 . . . . . 6 (.r𝐹) = (.r𝐹)
10 eqid 2187 . . . . . 6 (1r𝐹) = (1r𝐹)
113, 4, 5, 6, 7, 8, 9, 10islmod 13480 . . . . 5 (𝐾 ∈ LMod ↔ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ (Base‘𝐹)∀𝑟 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠𝐾)𝑤) ∈ (Base‘𝐾) ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤))))
1211simp2bi 1014 . . . 4 (𝐾 ∈ LMod → 𝐹 ∈ Ring)
1312a1i 9 . . 3 (𝜑 → (𝐾 ∈ LMod → 𝐹 ∈ Ring))
14 simplr 528 . . . . . . 7 (((𝜑𝐾 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → 𝐾 ∈ LMod)
15 simprl 529 . . . . . . . 8 (((𝜑𝐾 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → 𝑥𝑃)
16 lmodprop2d.p1 . . . . . . . . 9 (𝜑𝑃 = (Base‘𝐹))
1716ad2antrr 488 . . . . . . . 8 (((𝜑𝐾 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → 𝑃 = (Base‘𝐹))
1815, 17eleqtrd 2266 . . . . . . 7 (((𝜑𝐾 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → 𝑥 ∈ (Base‘𝐹))
19 simprr 531 . . . . . . . 8 (((𝜑𝐾 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → 𝑦𝐵)
20 lmodprop2d.b1 . . . . . . . . 9 (𝜑𝐵 = (Base‘𝐾))
2120ad2antrr 488 . . . . . . . 8 (((𝜑𝐾 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → 𝐵 = (Base‘𝐾))
2219, 21eleqtrd 2266 . . . . . . 7 (((𝜑𝐾 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → 𝑦 ∈ (Base‘𝐾))
233, 6, 5, 7lmodvscl 13494 . . . . . . 7 ((𝐾 ∈ LMod ∧ 𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥( ·𝑠𝐾)𝑦) ∈ (Base‘𝐾))
2414, 18, 22, 23syl3anc 1248 . . . . . 6 (((𝜑𝐾 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) ∈ (Base‘𝐾))
2524, 21eleqtrrd 2267 . . . . 5 (((𝜑𝐾 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)
2625ralrimivva 2569 . . . 4 ((𝜑𝐾 ∈ LMod) → ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)
2726ex 115 . . 3 (𝜑 → (𝐾 ∈ LMod → ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵))
282, 13, 273jcad 1179 . 2 (𝜑 → (𝐾 ∈ LMod → (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)))
29 lmodgrp 13483 . . . 4 (𝐿 ∈ LMod → 𝐿 ∈ Grp)
30 lmodprop2d.b2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
31 lmodprop2d.1 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
3220, 30, 31grppropd 12915 . . . 4 (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp))
3329, 32imbitrrid 156 . . 3 (𝜑 → (𝐿 ∈ LMod → 𝐾 ∈ Grp))
34 eqid 2187 . . . . . 6 (Base‘𝐿) = (Base‘𝐿)
35 eqid 2187 . . . . . 6 (+g𝐿) = (+g𝐿)
36 eqid 2187 . . . . . 6 ( ·𝑠𝐿) = ( ·𝑠𝐿)
37 lmodprop2d.g . . . . . 6 𝐺 = (Scalar‘𝐿)
38 eqid 2187 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
39 eqid 2187 . . . . . 6 (+g𝐺) = (+g𝐺)
40 eqid 2187 . . . . . 6 (.r𝐺) = (.r𝐺)
41 eqid 2187 . . . . . 6 (1r𝐺) = (1r𝐺)
4234, 35, 36, 37, 38, 39, 40, 41islmod 13480 . . . . 5 (𝐿 ∈ LMod ↔ (𝐿 ∈ Grp ∧ 𝐺 ∈ Ring ∧ ∀𝑞 ∈ (Base‘𝐺)∀𝑟 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠𝐿)𝑤) ∈ (Base‘𝐿) ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤))))
4342simp2bi 1014 . . . 4 (𝐿 ∈ LMod → 𝐺 ∈ Ring)
44 lmodprop2d.p2 . . . . 5 (𝜑𝑃 = (Base‘𝐺))
45 lmodprop2d.2 . . . . 5 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(+g𝐹)𝑦) = (𝑥(+g𝐺)𝑦))
46 lmodprop2d.3 . . . . 5 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(.r𝐹)𝑦) = (𝑥(.r𝐺)𝑦))
4716, 44, 45, 46ringpropd 13290 . . . 4 (𝜑 → (𝐹 ∈ Ring ↔ 𝐺 ∈ Ring))
4843, 47imbitrrid 156 . . 3 (𝜑 → (𝐿 ∈ LMod → 𝐹 ∈ Ring))
49 simplr 528 . . . . . . 7 (((𝜑𝐿 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → 𝐿 ∈ LMod)
50 simprl 529 . . . . . . . 8 (((𝜑𝐿 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → 𝑥𝑃)
5144ad2antrr 488 . . . . . . . 8 (((𝜑𝐿 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → 𝑃 = (Base‘𝐺))
5250, 51eleqtrd 2266 . . . . . . 7 (((𝜑𝐿 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → 𝑥 ∈ (Base‘𝐺))
53 simprr 531 . . . . . . . 8 (((𝜑𝐿 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → 𝑦𝐵)
5430ad2antrr 488 . . . . . . . 8 (((𝜑𝐿 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → 𝐵 = (Base‘𝐿))
5553, 54eleqtrd 2266 . . . . . . 7 (((𝜑𝐿 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → 𝑦 ∈ (Base‘𝐿))
5634, 37, 36, 38lmodvscl 13494 . . . . . . 7 ((𝐿 ∈ LMod ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐿)) → (𝑥( ·𝑠𝐿)𝑦) ∈ (Base‘𝐿))
5749, 52, 55, 56syl3anc 1248 . . . . . 6 (((𝜑𝐿 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐿)𝑦) ∈ (Base‘𝐿))
58 lmodprop2d.4 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
5958adantlr 477 . . . . . 6 (((𝜑𝐿 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
6057, 59, 543eltr4d 2271 . . . . 5 (((𝜑𝐿 ∈ LMod) ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)
6160ralrimivva 2569 . . . 4 ((𝜑𝐿 ∈ LMod) → ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)
6261ex 115 . . 3 (𝜑 → (𝐿 ∈ LMod → ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵))
6333, 48, 623jcad 1179 . 2 (𝜑 → (𝐿 ∈ LMod → (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)))
6432adantr 276 . . . . 5 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp))
6547adantr 276 . . . . 5 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (𝐹 ∈ Ring ↔ 𝐺 ∈ Ring))
66 simpll 527 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → 𝜑)
67 simprlr 538 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → 𝑟𝑃)
68 simprrr 540 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → 𝑤𝐵)
6958oveqrspc2v 5915 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟𝑃𝑤𝐵)) → (𝑟( ·𝑠𝐾)𝑤) = (𝑟( ·𝑠𝐿)𝑤))
7066, 67, 68, 69syl12anc 1246 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐾)𝑤) = (𝑟( ·𝑠𝐿)𝑤))
7170eleq1d 2256 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵 ↔ (𝑟( ·𝑠𝐿)𝑤) ∈ 𝐵))
72 simplr1 1040 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → 𝐾 ∈ Grp)
7320ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → 𝐵 = (Base‘𝐾))
7468, 73eleqtrd 2266 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → 𝑤 ∈ (Base‘𝐾))
75 simprrl 539 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → 𝑧𝐵)
7675, 73eleqtrd 2266 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → 𝑧 ∈ (Base‘𝐾))
773, 4, 72, 74, 76grpcld 12912 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑤(+g𝐾)𝑧) ∈ (Base‘𝐾))
7877, 73eleqtrrd 2267 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑤(+g𝐾)𝑧) ∈ 𝐵)
7958oveqrspc2v 5915 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟𝑃 ∧ (𝑤(+g𝐾)𝑧) ∈ 𝐵)) → (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = (𝑟( ·𝑠𝐿)(𝑤(+g𝐾)𝑧)))
8066, 67, 78, 79syl12anc 1246 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = (𝑟( ·𝑠𝐿)(𝑤(+g𝐾)𝑧)))
8131oveqrspc2v 5915 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑤𝐵𝑧𝐵)) → (𝑤(+g𝐾)𝑧) = (𝑤(+g𝐿)𝑧))
8266, 68, 75, 81syl12anc 1246 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑤(+g𝐾)𝑧) = (𝑤(+g𝐿)𝑧))
8382oveq2d 5904 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐿)(𝑤(+g𝐾)𝑧)) = (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)))
8480, 83eqtrd 2220 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)))
85 simplr3 1042 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)
86 ovrspc2v 5914 . . . . . . . . . . . . . . 15 (((𝑟𝑃𝑤𝐵) ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵) → (𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵)
8767, 68, 85, 86syl21anc 1247 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵)
88 ovrspc2v 5914 . . . . . . . . . . . . . . 15 (((𝑟𝑃𝑧𝐵) ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵) → (𝑟( ·𝑠𝐾)𝑧) ∈ 𝐵)
8967, 75, 85, 88syl21anc 1247 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐾)𝑧) ∈ 𝐵)
9031oveqrspc2v 5915 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐾)𝑧) ∈ 𝐵)) → ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐿)(𝑟( ·𝑠𝐾)𝑧)))
9166, 87, 89, 90syl12anc 1246 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐿)(𝑟( ·𝑠𝐾)𝑧)))
9258oveqrspc2v 5915 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑟𝑃𝑧𝐵)) → (𝑟( ·𝑠𝐾)𝑧) = (𝑟( ·𝑠𝐿)𝑧))
9366, 67, 75, 92syl12anc 1246 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐾)𝑧) = (𝑟( ·𝑠𝐿)𝑧))
9470, 93oveq12d 5906 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((𝑟( ·𝑠𝐾)𝑤)(+g𝐿)(𝑟( ·𝑠𝐾)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)))
9591, 94eqtrd 2220 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)))
9684, 95eqeq12d 2202 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ↔ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧))))
97 simplr2 1041 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → 𝐹 ∈ Ring)
98 simprll 537 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → 𝑞𝑃)
9916ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → 𝑃 = (Base‘𝐹))
10098, 99eleqtrd 2266 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → 𝑞 ∈ (Base‘𝐹))
10167, 99eleqtrd 2266 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → 𝑟 ∈ (Base‘𝐹))
1027, 8ringacl 13282 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ Ring ∧ 𝑞 ∈ (Base‘𝐹) ∧ 𝑟 ∈ (Base‘𝐹)) → (𝑞(+g𝐹)𝑟) ∈ (Base‘𝐹))
10397, 100, 101, 102syl3anc 1248 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑞(+g𝐹)𝑟) ∈ (Base‘𝐹))
104103, 99eleqtrrd 2267 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑞(+g𝐹)𝑟) ∈ 𝑃)
10558oveqrspc2v 5915 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑞(+g𝐹)𝑟) ∈ 𝑃𝑤𝐵)) → ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞(+g𝐹)𝑟)( ·𝑠𝐿)𝑤))
10666, 104, 68, 105syl12anc 1246 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞(+g𝐹)𝑟)( ·𝑠𝐿)𝑤))
10745oveqrspc2v 5915 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑞𝑃𝑟𝑃)) → (𝑞(+g𝐹)𝑟) = (𝑞(+g𝐺)𝑟))
108107ad2ant2r 509 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑞(+g𝐹)𝑟) = (𝑞(+g𝐺)𝑟))
109108oveq1d 5903 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((𝑞(+g𝐹)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤))
110106, 109eqtrd 2220 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤))
111 ovrspc2v 5914 . . . . . . . . . . . . . . 15 (((𝑞𝑃𝑤𝐵) ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵) → (𝑞( ·𝑠𝐾)𝑤) ∈ 𝐵)
11298, 68, 85, 111syl21anc 1247 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑞( ·𝑠𝐾)𝑤) ∈ 𝐵)
11331oveqrspc2v 5915 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑞( ·𝑠𝐾)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵)) → ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤)) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐿)(𝑟( ·𝑠𝐾)𝑤)))
11466, 112, 87, 113syl12anc 1246 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤)) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐿)(𝑟( ·𝑠𝐾)𝑤)))
11558oveqrspc2v 5915 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑞𝑃𝑤𝐵)) → (𝑞( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐿)𝑤))
11666, 98, 68, 115syl12anc 1246 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑞( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐿)𝑤))
117116, 70oveq12d 5906 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((𝑞( ·𝑠𝐾)𝑤)(+g𝐿)(𝑟( ·𝑠𝐾)𝑤)) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤)))
118114, 117eqtrd 2220 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤)) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤)))
119110, 118eqeq12d 2202 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤)) ↔ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))))
12071, 96, 1193anbi123d 1322 . . . . . . . . . 10 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (((𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ↔ ((𝑟( ·𝑠𝐿)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤)))))
1217, 9ringcl 13265 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ Ring ∧ 𝑞 ∈ (Base‘𝐹) ∧ 𝑟 ∈ (Base‘𝐹)) → (𝑞(.r𝐹)𝑟) ∈ (Base‘𝐹))
12297, 100, 101, 121syl3anc 1248 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑞(.r𝐹)𝑟) ∈ (Base‘𝐹))
123122, 99eleqtrrd 2267 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑞(.r𝐹)𝑟) ∈ 𝑃)
12458oveqrspc2v 5915 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑞(.r𝐹)𝑟) ∈ 𝑃𝑤𝐵)) → ((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞(.r𝐹)𝑟)( ·𝑠𝐿)𝑤))
12566, 123, 68, 124syl12anc 1246 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞(.r𝐹)𝑟)( ·𝑠𝐿)𝑤))
12646oveqrspc2v 5915 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑞𝑃𝑟𝑃)) → (𝑞(.r𝐹)𝑟) = (𝑞(.r𝐺)𝑟))
127126ad2ant2r 509 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑞(.r𝐹)𝑟) = (𝑞(.r𝐺)𝑟))
128127oveq1d 5903 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((𝑞(.r𝐹)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤))
129125, 128eqtrd 2220 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤))
13058oveqrspc2v 5915 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑞𝑃 ∧ (𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵)) → (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐾)𝑤)))
13166, 98, 87, 130syl12anc 1246 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐾)𝑤)))
13270oveq2d 5904 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐾)𝑤)) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)))
133131, 132eqtrd 2220 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)))
134129, 133eqeq12d 2202 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ↔ ((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤))))
1357, 10ringidcl 13272 . . . . . . . . . . . . . . . 16 (𝐹 ∈ Ring → (1r𝐹) ∈ (Base‘𝐹))
13697, 135syl 14 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (1r𝐹) ∈ (Base‘𝐹))
137136, 99eleqtrrd 2267 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (1r𝐹) ∈ 𝑃)
13858oveqrspc2v 5915 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((1r𝐹) ∈ 𝑃𝑤𝐵)) → ((1r𝐹)( ·𝑠𝐾)𝑤) = ((1r𝐹)( ·𝑠𝐿)𝑤))
13966, 137, 68, 138syl12anc 1246 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((1r𝐹)( ·𝑠𝐾)𝑤) = ((1r𝐹)( ·𝑠𝐿)𝑤))
140163ad2ant1 1019 . . . . . . . . . . . . . . . 16 ((𝜑𝐾 ∈ Grp ∧ 𝐹 ∈ Ring) → 𝑃 = (Base‘𝐹))
141443ad2ant1 1019 . . . . . . . . . . . . . . . 16 ((𝜑𝐾 ∈ Grp ∧ 𝐹 ∈ Ring) → 𝑃 = (Base‘𝐺))
142463ad2antl1 1160 . . . . . . . . . . . . . . . 16 (((𝜑𝐾 ∈ Grp ∧ 𝐹 ∈ Ring) ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(.r𝐹)𝑦) = (𝑥(.r𝐺)𝑦))
143 simp3 1000 . . . . . . . . . . . . . . . 16 ((𝜑𝐾 ∈ Grp ∧ 𝐹 ∈ Ring) → 𝐹 ∈ Ring)
14447biimpa 296 . . . . . . . . . . . . . . . . 17 ((𝜑𝐹 ∈ Ring) → 𝐺 ∈ Ring)
1451443adant2 1017 . . . . . . . . . . . . . . . 16 ((𝜑𝐾 ∈ Grp ∧ 𝐹 ∈ Ring) → 𝐺 ∈ Ring)
146140, 141, 142, 143, 145rngidpropdg 13394 . . . . . . . . . . . . . . 15 ((𝜑𝐾 ∈ Grp ∧ 𝐹 ∈ Ring) → (1r𝐹) = (1r𝐺))
14766, 72, 97, 146syl3anc 1248 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (1r𝐹) = (1r𝐺))
148147oveq1d 5903 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((1r𝐹)( ·𝑠𝐿)𝑤) = ((1r𝐺)( ·𝑠𝐿)𝑤))
149139, 148eqtrd 2220 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((1r𝐹)( ·𝑠𝐾)𝑤) = ((1r𝐺)( ·𝑠𝐿)𝑤))
150149eqeq1d 2196 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → (((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤 ↔ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤))
151134, 150anbi12d 473 . . . . . . . . . 10 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤) ↔ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤)))
152120, 151anbi12d 473 . . . . . . . . 9 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ ((𝑞𝑃𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵))) → ((((𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤)) ↔ (((𝑟( ·𝑠𝐿)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤))))
153152anassrs 400 . . . . . . . 8 ((((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ (𝑞𝑃𝑟𝑃)) ∧ (𝑧𝐵𝑤𝐵)) → ((((𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤)) ↔ (((𝑟( ·𝑠𝐿)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤))))
1541532ralbidva 2509 . . . . . . 7 (((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) ∧ (𝑞𝑃𝑟𝑃)) → (∀𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤)) ↔ ∀𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐿)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤))))
1551542ralbidva 2509 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (∀𝑞𝑃𝑟𝑃𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤)) ↔ ∀𝑞𝑃𝑟𝑃𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐿)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤))))
15616adantr 276 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → 𝑃 = (Base‘𝐹))
15720adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → 𝐵 = (Base‘𝐾))
158157eleq2d 2257 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → ((𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵 ↔ (𝑟( ·𝑠𝐾)𝑤) ∈ (Base‘𝐾)))
1591583anbi1d 1326 . . . . . . . . . . 11 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (((𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ↔ ((𝑟( ·𝑠𝐾)𝑤) ∈ (Base‘𝐾) ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤)))))
160159anbi1d 465 . . . . . . . . . 10 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → ((((𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤)) ↔ (((𝑟( ·𝑠𝐾)𝑤) ∈ (Base‘𝐾) ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤))))
161157, 160raleqbidv 2695 . . . . . . . . 9 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (∀𝑤𝐵 (((𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤)) ↔ ∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠𝐾)𝑤) ∈ (Base‘𝐾) ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤))))
162157, 161raleqbidv 2695 . . . . . . . 8 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (∀𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤)) ↔ ∀𝑧 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠𝐾)𝑤) ∈ (Base‘𝐾) ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤))))
163156, 162raleqbidv 2695 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (∀𝑟𝑃𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤)) ↔ ∀𝑟 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠𝐾)𝑤) ∈ (Base‘𝐾) ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤))))
164156, 163raleqbidv 2695 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (∀𝑞𝑃𝑟𝑃𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤)) ↔ ∀𝑞 ∈ (Base‘𝐹)∀𝑟 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠𝐾)𝑤) ∈ (Base‘𝐾) ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤))))
16544adantr 276 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → 𝑃 = (Base‘𝐺))
16630adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → 𝐵 = (Base‘𝐿))
167166eleq2d 2257 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → ((𝑟( ·𝑠𝐿)𝑤) ∈ 𝐵 ↔ (𝑟( ·𝑠𝐿)𝑤) ∈ (Base‘𝐿)))
1681673anbi1d 1326 . . . . . . . . . . 11 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (((𝑟( ·𝑠𝐿)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ↔ ((𝑟( ·𝑠𝐿)𝑤) ∈ (Base‘𝐿) ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤)))))
169168anbi1d 465 . . . . . . . . . 10 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → ((((𝑟( ·𝑠𝐿)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤)) ↔ (((𝑟( ·𝑠𝐿)𝑤) ∈ (Base‘𝐿) ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤))))
170166, 169raleqbidv 2695 . . . . . . . . 9 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (∀𝑤𝐵 (((𝑟( ·𝑠𝐿)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤)) ↔ ∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠𝐿)𝑤) ∈ (Base‘𝐿) ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤))))
171166, 170raleqbidv 2695 . . . . . . . 8 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (∀𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐿)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤)) ↔ ∀𝑧 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠𝐿)𝑤) ∈ (Base‘𝐿) ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤))))
172165, 171raleqbidv 2695 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (∀𝑟𝑃𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐿)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤)) ↔ ∀𝑟 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠𝐿)𝑤) ∈ (Base‘𝐿) ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤))))
173165, 172raleqbidv 2695 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (∀𝑞𝑃𝑟𝑃𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐿)𝑤) ∈ 𝐵 ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤)) ↔ ∀𝑞 ∈ (Base‘𝐺)∀𝑟 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠𝐿)𝑤) ∈ (Base‘𝐿) ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤))))
174155, 164, 1733bitr3d 218 . . . . 5 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (∀𝑞 ∈ (Base‘𝐹)∀𝑟 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠𝐾)𝑤) ∈ (Base‘𝐾) ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤)) ↔ ∀𝑞 ∈ (Base‘𝐺)∀𝑟 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠𝐿)𝑤) ∈ (Base‘𝐿) ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤))))
17564, 65, 1743anbi123d 1322 . . . 4 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → ((𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑞 ∈ (Base‘𝐹)∀𝑟 ∈ (Base‘𝐹)∀𝑧 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠𝐾)𝑤) ∈ (Base‘𝐾) ∧ (𝑟( ·𝑠𝐾)(𝑤(+g𝐾)𝑧)) = ((𝑟( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑧)) ∧ ((𝑞(+g𝐹)𝑟)( ·𝑠𝐾)𝑤) = ((𝑞( ·𝑠𝐾)𝑤)(+g𝐾)(𝑟( ·𝑠𝐾)𝑤))) ∧ (((𝑞(.r𝐹)𝑟)( ·𝑠𝐾)𝑤) = (𝑞( ·𝑠𝐾)(𝑟( ·𝑠𝐾)𝑤)) ∧ ((1r𝐹)( ·𝑠𝐾)𝑤) = 𝑤))) ↔ (𝐿 ∈ Grp ∧ 𝐺 ∈ Ring ∧ ∀𝑞 ∈ (Base‘𝐺)∀𝑟 ∈ (Base‘𝐺)∀𝑧 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠𝐿)𝑤) ∈ (Base‘𝐿) ∧ (𝑟( ·𝑠𝐿)(𝑤(+g𝐿)𝑧)) = ((𝑟( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑧)) ∧ ((𝑞(+g𝐺)𝑟)( ·𝑠𝐿)𝑤) = ((𝑞( ·𝑠𝐿)𝑤)(+g𝐿)(𝑟( ·𝑠𝐿)𝑤))) ∧ (((𝑞(.r𝐺)𝑟)( ·𝑠𝐿)𝑤) = (𝑞( ·𝑠𝐿)(𝑟( ·𝑠𝐿)𝑤)) ∧ ((1r𝐺)( ·𝑠𝐿)𝑤) = 𝑤)))))
176175, 11, 423bitr4g 223 . . 3 ((𝜑 ∧ (𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵)) → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod))
177176ex 115 . 2 (𝜑 → ((𝐾 ∈ Grp ∧ 𝐹 ∈ Ring ∧ ∀𝑥𝑃𝑦𝐵 (𝑥( ·𝑠𝐾)𝑦) ∈ 𝐵) → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod)))
17828, 63, 177pm5.21ndd 706 1 (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 979   = wceq 1363  wcel 2158  wral 2465  cfv 5228  (class class class)co 5888  Basecbs 12476  +gcplusg 12551  .rcmulr 12552  Scalarcsca 12554   ·𝑠 cvsca 12555  Grpcgrp 12899  1rcur 13211  Ringcrg 13248  LModclmod 13476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-i2m1 7930  ax-0lt1 7931  ax-0id 7933  ax-rnegex 7934  ax-pre-ltirr 7937  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8008  df-mnf 8009  df-ltxr 8011  df-inn 8934  df-2 8992  df-3 8993  df-4 8994  df-5 8995  df-6 8996  df-ndx 12479  df-slot 12480  df-base 12482  df-sets 12483  df-plusg 12564  df-mulr 12565  df-sca 12567  df-vsca 12568  df-0g 12725  df-mgm 12794  df-sgrp 12827  df-mnd 12840  df-grp 12902  df-mgp 13173  df-ur 13212  df-ring 13250  df-lmod 13478
This theorem is referenced by:  lmodpropd  13538
  Copyright terms: Public domain W3C validator