ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a1tru GIF version

Theorem a1tru 1364
Description: Anything implies . (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.)
Assertion
Ref Expression
a1tru (𝜑 → ⊤)

Proof of Theorem a1tru
StepHypRef Expression
1 tru 1352 . 2
21a1i 9 1 (𝜑 → ⊤)
Colors of variables: wff set class
Syntax hints:  wi 4  wtru 1349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-tru 1351
This theorem is referenced by:  euotd  4239  elabrex  5737  riota5f  5833  bj-nn0suc0  13985
  Copyright terms: Public domain W3C validator