ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euotd GIF version

Theorem euotd 4176
Description: Prove existential uniqueness for an ordered triple. (Contributed by Mario Carneiro, 20-May-2015.)
Hypotheses
Ref Expression
euotd.1 (𝜑𝐴 ∈ V)
euotd.2 (𝜑𝐵 ∈ V)
euotd.3 (𝜑𝐶 ∈ V)
euotd.4 (𝜑 → (𝜓 ↔ (𝑎 = 𝐴𝑏 = 𝐵𝑐 = 𝐶)))
Assertion
Ref Expression
euotd (𝜑 → ∃!𝑥𝑎𝑏𝑐(𝑥 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓))
Distinct variable groups:   𝑎,𝑏,𝑐,𝑥,𝐴   𝐵,𝑎,𝑏,𝑐,𝑥   𝐶,𝑎,𝑏,𝑐,𝑥   𝜑,𝑎,𝑏,𝑐,𝑥
Allowed substitution hints:   𝜓(𝑥,𝑎,𝑏,𝑐)

Proof of Theorem euotd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 euotd.1 . . . 4 (𝜑𝐴 ∈ V)
2 euotd.2 . . . 4 (𝜑𝐵 ∈ V)
3 euotd.3 . . . 4 (𝜑𝐶 ∈ V)
4 otexg 4152 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → ⟨𝐴, 𝐵, 𝐶⟩ ∈ V)
51, 2, 3, 4syl3anc 1216 . . 3 (𝜑 → ⟨𝐴, 𝐵, 𝐶⟩ ∈ V)
6 euotd.4 . . . . . . . . . . . . 13 (𝜑 → (𝜓 ↔ (𝑎 = 𝐴𝑏 = 𝐵𝑐 = 𝐶)))
76biimpa 294 . . . . . . . . . . . 12 ((𝜑𝜓) → (𝑎 = 𝐴𝑏 = 𝐵𝑐 = 𝐶))
8 vex 2689 . . . . . . . . . . . . 13 𝑎 ∈ V
9 vex 2689 . . . . . . . . . . . . 13 𝑏 ∈ V
10 vex 2689 . . . . . . . . . . . . 13 𝑐 ∈ V
118, 9, 10otth 4164 . . . . . . . . . . . 12 (⟨𝑎, 𝑏, 𝑐⟩ = ⟨𝐴, 𝐵, 𝐶⟩ ↔ (𝑎 = 𝐴𝑏 = 𝐵𝑐 = 𝐶))
127, 11sylibr 133 . . . . . . . . . . 11 ((𝜑𝜓) → ⟨𝑎, 𝑏, 𝑐⟩ = ⟨𝐴, 𝐵, 𝐶⟩)
1312eqeq2d 2151 . . . . . . . . . 10 ((𝜑𝜓) → (𝑥 = ⟨𝑎, 𝑏, 𝑐⟩ ↔ 𝑥 = ⟨𝐴, 𝐵, 𝐶⟩))
1413biimpd 143 . . . . . . . . 9 ((𝜑𝜓) → (𝑥 = ⟨𝑎, 𝑏, 𝑐⟩ → 𝑥 = ⟨𝐴, 𝐵, 𝐶⟩))
1514impancom 258 . . . . . . . 8 ((𝜑𝑥 = ⟨𝑎, 𝑏, 𝑐⟩) → (𝜓𝑥 = ⟨𝐴, 𝐵, 𝐶⟩))
1615expimpd 360 . . . . . . 7 (𝜑 → ((𝑥 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓) → 𝑥 = ⟨𝐴, 𝐵, 𝐶⟩))
1716exlimdv 1791 . . . . . 6 (𝜑 → (∃𝑐(𝑥 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓) → 𝑥 = ⟨𝐴, 𝐵, 𝐶⟩))
1817exlimdvv 1869 . . . . 5 (𝜑 → (∃𝑎𝑏𝑐(𝑥 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓) → 𝑥 = ⟨𝐴, 𝐵, 𝐶⟩))
19 tru 1335 . . . . . . . . . . 11
202adantr 274 . . . . . . . . . . . . 13 ((𝜑𝑎 = 𝐴) → 𝐵 ∈ V)
213ad2antrr 479 . . . . . . . . . . . . . 14 (((𝜑𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → 𝐶 ∈ V)
22 simpr 109 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵𝑐 = 𝐶)) → (𝑎 = 𝐴𝑏 = 𝐵𝑐 = 𝐶))
2322, 11sylibr 133 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵𝑐 = 𝐶)) → ⟨𝑎, 𝑏, 𝑐⟩ = ⟨𝐴, 𝐵, 𝐶⟩)
2423eqcomd 2145 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵𝑐 = 𝐶)) → ⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩)
256biimpar 295 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵𝑐 = 𝐶)) → 𝜓)
2624, 25jca 304 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵𝑐 = 𝐶)) → (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓))
27 a1tru 1347 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵𝑐 = 𝐶)) → ⊤)
2826, 272thd 174 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 = 𝐴𝑏 = 𝐵𝑐 = 𝐶)) → ((⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓) ↔ ⊤))
29283anassrs 1207 . . . . . . . . . . . . . 14 ((((𝜑𝑎 = 𝐴) ∧ 𝑏 = 𝐵) ∧ 𝑐 = 𝐶) → ((⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓) ↔ ⊤))
3021, 29sbcied 2945 . . . . . . . . . . . . 13 (((𝜑𝑎 = 𝐴) ∧ 𝑏 = 𝐵) → ([𝐶 / 𝑐](⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓) ↔ ⊤))
3120, 30sbcied 2945 . . . . . . . . . . . 12 ((𝜑𝑎 = 𝐴) → ([𝐵 / 𝑏][𝐶 / 𝑐](⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓) ↔ ⊤))
321, 31sbcied 2945 . . . . . . . . . . 11 (𝜑 → ([𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐](⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓) ↔ ⊤))
3319, 32mpbiri 167 . . . . . . . . . 10 (𝜑[𝐴 / 𝑎][𝐵 / 𝑏][𝐶 / 𝑐](⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓))
3433spesbcd 2995 . . . . . . . . 9 (𝜑 → ∃𝑎[𝐵 / 𝑏][𝐶 / 𝑐](⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓))
35 nfcv 2281 . . . . . . . . . 10 𝑏𝐵
36 nfsbc1v 2927 . . . . . . . . . . 11 𝑏[𝐵 / 𝑏][𝐶 / 𝑐](⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓)
3736nfex 1616 . . . . . . . . . 10 𝑏𝑎[𝐵 / 𝑏][𝐶 / 𝑐](⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓)
38 sbceq1a 2918 . . . . . . . . . . 11 (𝑏 = 𝐵 → ([𝐶 / 𝑐](⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓) ↔ [𝐵 / 𝑏][𝐶 / 𝑐](⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓)))
3938exbidv 1797 . . . . . . . . . 10 (𝑏 = 𝐵 → (∃𝑎[𝐶 / 𝑐](⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓) ↔ ∃𝑎[𝐵 / 𝑏][𝐶 / 𝑐](⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓)))
4035, 37, 39spcegf 2769 . . . . . . . . 9 (𝐵 ∈ V → (∃𝑎[𝐵 / 𝑏][𝐶 / 𝑐](⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓) → ∃𝑏𝑎[𝐶 / 𝑐](⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓)))
412, 34, 40sylc 62 . . . . . . . 8 (𝜑 → ∃𝑏𝑎[𝐶 / 𝑐](⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓))
42 nfcv 2281 . . . . . . . . 9 𝑐𝐶
43 nfsbc1v 2927 . . . . . . . . . . 11 𝑐[𝐶 / 𝑐](⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓)
4443nfex 1616 . . . . . . . . . 10 𝑐𝑎[𝐶 / 𝑐](⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓)
4544nfex 1616 . . . . . . . . 9 𝑐𝑏𝑎[𝐶 / 𝑐](⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓)
46 sbceq1a 2918 . . . . . . . . . 10 (𝑐 = 𝐶 → ((⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓) ↔ [𝐶 / 𝑐](⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓)))
47462exbidv 1840 . . . . . . . . 9 (𝑐 = 𝐶 → (∃𝑏𝑎(⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓) ↔ ∃𝑏𝑎[𝐶 / 𝑐](⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓)))
4842, 45, 47spcegf 2769 . . . . . . . 8 (𝐶 ∈ V → (∃𝑏𝑎[𝐶 / 𝑐](⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓) → ∃𝑐𝑏𝑎(⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓)))
493, 41, 48sylc 62 . . . . . . 7 (𝜑 → ∃𝑐𝑏𝑎(⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓))
50 excom13 1667 . . . . . . 7 (∃𝑐𝑏𝑎(⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓) ↔ ∃𝑎𝑏𝑐(⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓))
5149, 50sylib 121 . . . . . 6 (𝜑 → ∃𝑎𝑏𝑐(⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓))
52 eqeq1 2146 . . . . . . . 8 (𝑥 = ⟨𝐴, 𝐵, 𝐶⟩ → (𝑥 = ⟨𝑎, 𝑏, 𝑐⟩ ↔ ⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩))
5352anbi1d 460 . . . . . . 7 (𝑥 = ⟨𝐴, 𝐵, 𝐶⟩ → ((𝑥 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓) ↔ (⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓)))
54533exbidv 1841 . . . . . 6 (𝑥 = ⟨𝐴, 𝐵, 𝐶⟩ → (∃𝑎𝑏𝑐(𝑥 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓) ↔ ∃𝑎𝑏𝑐(⟨𝐴, 𝐵, 𝐶⟩ = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓)))
5551, 54syl5ibrcom 156 . . . . 5 (𝜑 → (𝑥 = ⟨𝐴, 𝐵, 𝐶⟩ → ∃𝑎𝑏𝑐(𝑥 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓)))
5618, 55impbid 128 . . . 4 (𝜑 → (∃𝑎𝑏𝑐(𝑥 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓) ↔ 𝑥 = ⟨𝐴, 𝐵, 𝐶⟩))
5756alrimiv 1846 . . 3 (𝜑 → ∀𝑥(∃𝑎𝑏𝑐(𝑥 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓) ↔ 𝑥 = ⟨𝐴, 𝐵, 𝐶⟩))
58 eqeq2 2149 . . . . . 6 (𝑦 = ⟨𝐴, 𝐵, 𝐶⟩ → (𝑥 = 𝑦𝑥 = ⟨𝐴, 𝐵, 𝐶⟩))
5958bibi2d 231 . . . . 5 (𝑦 = ⟨𝐴, 𝐵, 𝐶⟩ → ((∃𝑎𝑏𝑐(𝑥 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓) ↔ 𝑥 = 𝑦) ↔ (∃𝑎𝑏𝑐(𝑥 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓) ↔ 𝑥 = ⟨𝐴, 𝐵, 𝐶⟩)))
6059albidv 1796 . . . 4 (𝑦 = ⟨𝐴, 𝐵, 𝐶⟩ → (∀𝑥(∃𝑎𝑏𝑐(𝑥 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓) ↔ 𝑥 = 𝑦) ↔ ∀𝑥(∃𝑎𝑏𝑐(𝑥 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓) ↔ 𝑥 = ⟨𝐴, 𝐵, 𝐶⟩)))
6160spcegv 2774 . . 3 (⟨𝐴, 𝐵, 𝐶⟩ ∈ V → (∀𝑥(∃𝑎𝑏𝑐(𝑥 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓) ↔ 𝑥 = ⟨𝐴, 𝐵, 𝐶⟩) → ∃𝑦𝑥(∃𝑎𝑏𝑐(𝑥 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓) ↔ 𝑥 = 𝑦)))
625, 57, 61sylc 62 . 2 (𝜑 → ∃𝑦𝑥(∃𝑎𝑏𝑐(𝑥 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓) ↔ 𝑥 = 𝑦))
63 df-eu 2002 . 2 (∃!𝑥𝑎𝑏𝑐(𝑥 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓) ↔ ∃𝑦𝑥(∃𝑎𝑏𝑐(𝑥 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓) ↔ 𝑥 = 𝑦))
6462, 63sylibr 133 1 (𝜑 → ∃!𝑥𝑎𝑏𝑐(𝑥 = ⟨𝑎, 𝑏, 𝑐⟩ ∧ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962  wal 1329   = wceq 1331  wtru 1332  wex 1468  wcel 1480  ∃!weu 1999  Vcvv 2686  [wsbc 2909  cotp 3531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-ot 3537
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator