ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riota5f GIF version

Theorem riota5f 5670
Description: A method for computing restricted iota. (Contributed by NM, 16-Apr-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
riota5f.1 (𝜑𝑥𝐵)
riota5f.2 (𝜑𝐵𝐴)
riota5f.3 ((𝜑𝑥𝐴) → (𝜓𝑥 = 𝐵))
Assertion
Ref Expression
riota5f (𝜑 → (𝑥𝐴 𝜓) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐵(𝑥)

Proof of Theorem riota5f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 riota5f.3 . . 3 ((𝜑𝑥𝐴) → (𝜓𝑥 = 𝐵))
21ralrimiva 2458 . 2 (𝜑 → ∀𝑥𝐴 (𝜓𝑥 = 𝐵))
3 riota5f.2 . . . 4 (𝜑𝐵𝐴)
4 a1tru 1312 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) → ⊤)
5 reu6i 2820 . . . . . . . . 9 ((𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦)) → ∃!𝑥𝐴 𝜓)
65adantl 272 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) → ∃!𝑥𝐴 𝜓)
7 nfv 1473 . . . . . . . . . 10 𝑥𝜑
8 nfv 1473 . . . . . . . . . . 11 𝑥 𝑦𝐴
9 nfra1 2420 . . . . . . . . . . 11 𝑥𝑥𝐴 (𝜓𝑥 = 𝑦)
108, 9nfan 1509 . . . . . . . . . 10 𝑥(𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))
117, 10nfan 1509 . . . . . . . . 9 𝑥(𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦)))
12 nfcvd 2236 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) → 𝑥𝑦)
13 nfvd 1474 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) → Ⅎ𝑥⊤)
14 simprl 499 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) → 𝑦𝐴)
15 simpr 109 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦)
16 simplrr 504 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → ∀𝑥𝐴 (𝜓𝑥 = 𝑦))
17 simplrl 503 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → 𝑦𝐴)
1815, 17eqeltrd 2171 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → 𝑥𝐴)
19 rsp 2434 . . . . . . . . . . . 12 (∀𝑥𝐴 (𝜓𝑥 = 𝑦) → (𝑥𝐴 → (𝜓𝑥 = 𝑦)))
2016, 18, 19sylc 62 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → (𝜓𝑥 = 𝑦))
2115, 20mpbird 166 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → 𝜓)
22 a1tru 1312 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → ⊤)
2321, 222thd 174 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → (𝜓 ↔ ⊤))
2411, 12, 13, 14, 23riota2df 5666 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) ∧ ∃!𝑥𝐴 𝜓) → (⊤ ↔ (𝑥𝐴 𝜓) = 𝑦))
256, 24mpdan 413 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) → (⊤ ↔ (𝑥𝐴 𝜓) = 𝑦))
264, 25mpbid 146 . . . . . 6 ((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) → (𝑥𝐴 𝜓) = 𝑦)
2726expr 368 . . . . 5 ((𝜑𝑦𝐴) → (∀𝑥𝐴 (𝜓𝑥 = 𝑦) → (𝑥𝐴 𝜓) = 𝑦))
2827ralrimiva 2458 . . . 4 (𝜑 → ∀𝑦𝐴 (∀𝑥𝐴 (𝜓𝑥 = 𝑦) → (𝑥𝐴 𝜓) = 𝑦))
29 rspsbc 2935 . . . 4 (𝐵𝐴 → (∀𝑦𝐴 (∀𝑥𝐴 (𝜓𝑥 = 𝑦) → (𝑥𝐴 𝜓) = 𝑦) → [𝐵 / 𝑦](∀𝑥𝐴 (𝜓𝑥 = 𝑦) → (𝑥𝐴 𝜓) = 𝑦)))
303, 28, 29sylc 62 . . 3 (𝜑[𝐵 / 𝑦](∀𝑥𝐴 (𝜓𝑥 = 𝑦) → (𝑥𝐴 𝜓) = 𝑦))
31 nfcvd 2236 . . . . . . . 8 (𝜑𝑥𝑦)
32 riota5f.1 . . . . . . . 8 (𝜑𝑥𝐵)
3331, 32nfeqd 2250 . . . . . . 7 (𝜑 → Ⅎ𝑥 𝑦 = 𝐵)
347, 33nfan1 1508 . . . . . 6 𝑥(𝜑𝑦 = 𝐵)
35 simpr 109 . . . . . . . 8 ((𝜑𝑦 = 𝐵) → 𝑦 = 𝐵)
3635eqeq2d 2106 . . . . . . 7 ((𝜑𝑦 = 𝐵) → (𝑥 = 𝑦𝑥 = 𝐵))
3736bibi2d 231 . . . . . 6 ((𝜑𝑦 = 𝐵) → ((𝜓𝑥 = 𝑦) ↔ (𝜓𝑥 = 𝐵)))
3834, 37ralbid 2389 . . . . 5 ((𝜑𝑦 = 𝐵) → (∀𝑥𝐴 (𝜓𝑥 = 𝑦) ↔ ∀𝑥𝐴 (𝜓𝑥 = 𝐵)))
3935eqeq2d 2106 . . . . 5 ((𝜑𝑦 = 𝐵) → ((𝑥𝐴 𝜓) = 𝑦 ↔ (𝑥𝐴 𝜓) = 𝐵))
4038, 39imbi12d 233 . . . 4 ((𝜑𝑦 = 𝐵) → ((∀𝑥𝐴 (𝜓𝑥 = 𝑦) → (𝑥𝐴 𝜓) = 𝑦) ↔ (∀𝑥𝐴 (𝜓𝑥 = 𝐵) → (𝑥𝐴 𝜓) = 𝐵)))
413, 40sbcied 2889 . . 3 (𝜑 → ([𝐵 / 𝑦](∀𝑥𝐴 (𝜓𝑥 = 𝑦) → (𝑥𝐴 𝜓) = 𝑦) ↔ (∀𝑥𝐴 (𝜓𝑥 = 𝐵) → (𝑥𝐴 𝜓) = 𝐵)))
4230, 41mpbid 146 . 2 (𝜑 → (∀𝑥𝐴 (𝜓𝑥 = 𝐵) → (𝑥𝐴 𝜓) = 𝐵))
432, 42mpd 13 1 (𝜑 → (𝑥𝐴 𝜓) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1296  wtru 1297  wcel 1445  wnfc 2222  wral 2370  ∃!wreu 2372  [wsbc 2854  crio 5645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-reu 2377  df-v 2635  df-sbc 2855  df-un 3017  df-sn 3472  df-pr 3473  df-uni 3676  df-iota 5014  df-riota 5646
This theorem is referenced by:  riota5  5671
  Copyright terms: Public domain W3C validator