| Step | Hyp | Ref
 | Expression | 
| 1 |   | riota5f.3 | 
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝑥 = 𝐵)) | 
| 2 | 1 | ralrimiva 2570 | 
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝐵)) | 
| 3 |   | riota5f.2 | 
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝐴) | 
| 4 |   | trud 1380 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝑦))) → ⊤) | 
| 5 |   | reu6i 2955 | 
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝑦)) → ∃!𝑥 ∈ 𝐴 𝜓) | 
| 6 | 5 | adantl 277 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝑦))) → ∃!𝑥 ∈ 𝐴 𝜓) | 
| 7 |   | nfv 1542 | 
. . . . . . . . . 10
⊢
Ⅎ𝑥𝜑 | 
| 8 |   | nfv 1542 | 
. . . . . . . . . . 11
⊢
Ⅎ𝑥 𝑦 ∈ 𝐴 | 
| 9 |   | nfra1 2528 | 
. . . . . . . . . . 11
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝑦) | 
| 10 | 8, 9 | nfan 1579 | 
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝑦)) | 
| 11 | 7, 10 | nfan 1579 | 
. . . . . . . . 9
⊢
Ⅎ𝑥(𝜑 ∧ (𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝑦))) | 
| 12 |   | nfcvd 2340 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝑦))) → Ⅎ𝑥𝑦) | 
| 13 |   | nfvd 1543 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝑦))) → Ⅎ𝑥⊤) | 
| 14 |   | simprl 529 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝑦))) → 𝑦 ∈ 𝐴) | 
| 15 |   | simpr 110 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦) | 
| 16 |   | simplrr 536 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝑦)) | 
| 17 |   | simplrl 535 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → 𝑦 ∈ 𝐴) | 
| 18 | 15, 17 | eqeltrd 2273 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → 𝑥 ∈ 𝐴) | 
| 19 |   | rsp 2544 | 
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝐴 (𝜓 ↔ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 → (𝜓 ↔ 𝑥 = 𝑦))) | 
| 20 | 16, 18, 19 | sylc 62 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝑥 = 𝑦)) | 
| 21 | 15, 20 | mpbird 167 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → 𝜓) | 
| 22 |   | trud 1380 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → ⊤) | 
| 23 | 21, 22 | 2thd 175 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → (𝜓 ↔ ⊤)) | 
| 24 | 11, 12, 13, 14, 23 | riota2df 5898 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝑦))) ∧ ∃!𝑥 ∈ 𝐴 𝜓) → (⊤ ↔
(℩𝑥 ∈
𝐴 𝜓) = 𝑦)) | 
| 25 | 6, 24 | mpdan 421 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝑦))) → (⊤ ↔
(℩𝑥 ∈
𝐴 𝜓) = 𝑦)) | 
| 26 | 4, 25 | mpbid 147 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝑦))) → (℩𝑥 ∈ 𝐴 𝜓) = 𝑦) | 
| 27 | 26 | expr 375 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝑦) → (℩𝑥 ∈ 𝐴 𝜓) = 𝑦)) | 
| 28 | 27 | ralrimiva 2570 | 
. . . 4
⊢ (𝜑 → ∀𝑦 ∈ 𝐴 (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝑦) → (℩𝑥 ∈ 𝐴 𝜓) = 𝑦)) | 
| 29 |   | rspsbc 3072 | 
. . . 4
⊢ (𝐵 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝑦) → (℩𝑥 ∈ 𝐴 𝜓) = 𝑦) → [𝐵 / 𝑦](∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝑦) → (℩𝑥 ∈ 𝐴 𝜓) = 𝑦))) | 
| 30 | 3, 28, 29 | sylc 62 | 
. . 3
⊢ (𝜑 → [𝐵 / 𝑦](∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝑦) → (℩𝑥 ∈ 𝐴 𝜓) = 𝑦)) | 
| 31 |   | nfcvd 2340 | 
. . . . . . . 8
⊢ (𝜑 → Ⅎ𝑥𝑦) | 
| 32 |   | riota5f.1 | 
. . . . . . . 8
⊢ (𝜑 → Ⅎ𝑥𝐵) | 
| 33 | 31, 32 | nfeqd 2354 | 
. . . . . . 7
⊢ (𝜑 → Ⅎ𝑥 𝑦 = 𝐵) | 
| 34 | 7, 33 | nfan1 1578 | 
. . . . . 6
⊢
Ⅎ𝑥(𝜑 ∧ 𝑦 = 𝐵) | 
| 35 |   | simpr 110 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) | 
| 36 | 35 | eqeq2d 2208 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 = 𝐵) → (𝑥 = 𝑦 ↔ 𝑥 = 𝐵)) | 
| 37 | 36 | bibi2d 232 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 = 𝐵) → ((𝜓 ↔ 𝑥 = 𝑦) ↔ (𝜓 ↔ 𝑥 = 𝐵))) | 
| 38 | 34, 37 | ralbid 2495 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑦 = 𝐵) → (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝑦) ↔ ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝐵))) | 
| 39 | 35 | eqeq2d 2208 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑦 = 𝐵) → ((℩𝑥 ∈ 𝐴 𝜓) = 𝑦 ↔ (℩𝑥 ∈ 𝐴 𝜓) = 𝐵)) | 
| 40 | 38, 39 | imbi12d 234 | 
. . . 4
⊢ ((𝜑 ∧ 𝑦 = 𝐵) → ((∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝑦) → (℩𝑥 ∈ 𝐴 𝜓) = 𝑦) ↔ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝐵) → (℩𝑥 ∈ 𝐴 𝜓) = 𝐵))) | 
| 41 | 3, 40 | sbcied 3026 | 
. . 3
⊢ (𝜑 → ([𝐵 / 𝑦](∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝑦) → (℩𝑥 ∈ 𝐴 𝜓) = 𝑦) ↔ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝐵) → (℩𝑥 ∈ 𝐴 𝜓) = 𝐵))) | 
| 42 | 30, 41 | mpbid 147 | 
. 2
⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝑥 = 𝐵) → (℩𝑥 ∈ 𝐴 𝜓) = 𝐵)) | 
| 43 | 2, 42 | mpd 13 | 
1
⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = 𝐵) |