ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elabrex GIF version

Theorem elabrex 5804
Description: Elementhood in an image set. (Contributed by Mario Carneiro, 14-Jan-2014.)
Hypothesis
Ref Expression
elabrex.1 𝐵 ∈ V
Assertion
Ref Expression
elabrex (𝑥𝐴𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Distinct variable groups:   𝑦,𝐵   𝑥,𝑦,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem elabrex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tru 1368 . . . 4
2 csbeq1a 3093 . . . . . . 7 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
32equcoms 1722 . . . . . 6 (𝑧 = 𝑥𝐵 = 𝑧 / 𝑥𝐵)
4 trud 1380 . . . . . 6 (𝑧 = 𝑥 → ⊤)
53, 42thd 175 . . . . 5 (𝑧 = 𝑥 → (𝐵 = 𝑧 / 𝑥𝐵 ↔ ⊤))
65rspcev 2868 . . . 4 ((𝑥𝐴 ∧ ⊤) → ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵)
71, 6mpan2 425 . . 3 (𝑥𝐴 → ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵)
8 elabrex.1 . . . 4 𝐵 ∈ V
9 eqeq1 2203 . . . . 5 (𝑦 = 𝐵 → (𝑦 = 𝑧 / 𝑥𝐵𝐵 = 𝑧 / 𝑥𝐵))
109rexbidv 2498 . . . 4 (𝑦 = 𝐵 → (∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵 ↔ ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵))
118, 10elab 2908 . . 3 (𝐵 ∈ {𝑦 ∣ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵} ↔ ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵)
127, 11sylibr 134 . 2 (𝑥𝐴𝐵 ∈ {𝑦 ∣ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵})
13 nfv 1542 . . . 4 𝑧 𝑦 = 𝐵
14 nfcsb1v 3117 . . . . 5 𝑥𝑧 / 𝑥𝐵
1514nfeq2 2351 . . . 4 𝑥 𝑦 = 𝑧 / 𝑥𝐵
162eqeq2d 2208 . . . 4 (𝑥 = 𝑧 → (𝑦 = 𝐵𝑦 = 𝑧 / 𝑥𝐵))
1713, 15, 16cbvrex 2726 . . 3 (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵)
1817abbii 2312 . 2 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵}
1912, 18eleqtrrdi 2290 1 (𝑥𝐴𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wtru 1365  wcel 2167  {cab 2182  wrex 2476  Vcvv 2763  csb 3084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085
This theorem is referenced by:  eusvobj2  5908
  Copyright terms: Public domain W3C validator