| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elabrex | GIF version | ||
| Description: Elementhood in an image set. (Contributed by Mario Carneiro, 14-Jan-2014.) |
| Ref | Expression |
|---|---|
| elabrex.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| elabrex | ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1377 | . . . 4 ⊢ ⊤ | |
| 2 | csbeq1a 3103 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) | |
| 3 | 2 | equcoms 1732 | . . . . . 6 ⊢ (𝑧 = 𝑥 → 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
| 4 | trud 1389 | . . . . . 6 ⊢ (𝑧 = 𝑥 → ⊤) | |
| 5 | 3, 4 | 2thd 175 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝐵 = ⦋𝑧 / 𝑥⦌𝐵 ↔ ⊤)) |
| 6 | 5 | rspcev 2878 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ ⊤) → ∃𝑧 ∈ 𝐴 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
| 7 | 1, 6 | mpan2 425 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∃𝑧 ∈ 𝐴 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
| 8 | elabrex.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 9 | eqeq1 2213 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 = ⦋𝑧 / 𝑥⦌𝐵 ↔ 𝐵 = ⦋𝑧 / 𝑥⦌𝐵)) | |
| 10 | 9 | rexbidv 2508 | . . . 4 ⊢ (𝑦 = 𝐵 → (∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵 ↔ ∃𝑧 ∈ 𝐴 𝐵 = ⦋𝑧 / 𝑥⦌𝐵)) |
| 11 | 8, 10 | elab 2918 | . . 3 ⊢ (𝐵 ∈ {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵} ↔ ∃𝑧 ∈ 𝐴 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
| 12 | 7, 11 | sylibr 134 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵}) |
| 13 | nfv 1552 | . . . 4 ⊢ Ⅎ𝑧 𝑦 = 𝐵 | |
| 14 | nfcsb1v 3127 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐵 | |
| 15 | 14 | nfeq2 2361 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = ⦋𝑧 / 𝑥⦌𝐵 |
| 16 | 2 | eqeq2d 2218 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑦 = 𝐵 ↔ 𝑦 = ⦋𝑧 / 𝑥⦌𝐵)) |
| 17 | 13, 15, 16 | cbvrex 2736 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵) |
| 18 | 17 | abbii 2322 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵} |
| 19 | 12, 18 | eleqtrrdi 2300 | 1 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ⊤wtru 1374 ∈ wcel 2177 {cab 2192 ∃wrex 2486 Vcvv 2773 ⦋csb 3094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-sbc 3000 df-csb 3095 |
| This theorem is referenced by: eusvobj2 5937 |
| Copyright terms: Public domain | W3C validator |