ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elabrex GIF version

Theorem elabrex 5480
Description: Elementhood in an image set. (Contributed by Mario Carneiro, 14-Jan-2014.)
Hypothesis
Ref Expression
elabrex.1 𝐵 ∈ V
Assertion
Ref Expression
elabrex (𝑥𝐴𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Distinct variable groups:   𝑦,𝐵   𝑥,𝑦,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem elabrex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tru 1291 . . . 4
2 csbeq1a 2929 . . . . . . 7 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
32equcoms 1638 . . . . . 6 (𝑧 = 𝑥𝐵 = 𝑧 / 𝑥𝐵)
4 a1tru 1303 . . . . . 6 (𝑧 = 𝑥 → ⊤)
53, 42thd 173 . . . . 5 (𝑧 = 𝑥 → (𝐵 = 𝑧 / 𝑥𝐵 ↔ ⊤))
65rspcev 2714 . . . 4 ((𝑥𝐴 ∧ ⊤) → ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵)
71, 6mpan2 416 . . 3 (𝑥𝐴 → ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵)
8 elabrex.1 . . . 4 𝐵 ∈ V
9 eqeq1 2091 . . . . 5 (𝑦 = 𝐵 → (𝑦 = 𝑧 / 𝑥𝐵𝐵 = 𝑧 / 𝑥𝐵))
109rexbidv 2377 . . . 4 (𝑦 = 𝐵 → (∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵 ↔ ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵))
118, 10elab 2750 . . 3 (𝐵 ∈ {𝑦 ∣ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵} ↔ ∃𝑧𝐴 𝐵 = 𝑧 / 𝑥𝐵)
127, 11sylibr 132 . 2 (𝑥𝐴𝐵 ∈ {𝑦 ∣ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵})
13 nfv 1464 . . . 4 𝑧 𝑦 = 𝐵
14 nfcsb1v 2951 . . . . 5 𝑥𝑧 / 𝑥𝐵
1514nfeq2 2236 . . . 4 𝑥 𝑦 = 𝑧 / 𝑥𝐵
162eqeq2d 2096 . . . 4 (𝑥 = 𝑧 → (𝑦 = 𝐵𝑦 = 𝑧 / 𝑥𝐵))
1713, 15, 16cbvrex 2582 . . 3 (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵)
1817abbii 2200 . 2 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑧𝐴 𝑦 = 𝑧 / 𝑥𝐵}
1912, 18syl6eleqr 2178 1 (𝑥𝐴𝐵 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1287  wtru 1288  wcel 1436  {cab 2071  wrex 2356  Vcvv 2614  csb 2921
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-rex 2361  df-v 2616  df-sbc 2829  df-csb 2922
This theorem is referenced by:  eusvobj2  5580
  Copyright terms: Public domain W3C validator