| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elabrex | GIF version | ||
| Description: Elementhood in an image set. (Contributed by Mario Carneiro, 14-Jan-2014.) | 
| Ref | Expression | 
|---|---|
| elabrex.1 | ⊢ 𝐵 ∈ V | 
| Ref | Expression | 
|---|---|
| elabrex | ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tru 1368 | . . . 4 ⊢ ⊤ | |
| 2 | csbeq1a 3093 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) | |
| 3 | 2 | equcoms 1722 | . . . . . 6 ⊢ (𝑧 = 𝑥 → 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) | 
| 4 | trud 1380 | . . . . . 6 ⊢ (𝑧 = 𝑥 → ⊤) | |
| 5 | 3, 4 | 2thd 175 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝐵 = ⦋𝑧 / 𝑥⦌𝐵 ↔ ⊤)) | 
| 6 | 5 | rspcev 2868 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ ⊤) → ∃𝑧 ∈ 𝐴 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) | 
| 7 | 1, 6 | mpan2 425 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∃𝑧 ∈ 𝐴 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) | 
| 8 | elabrex.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 9 | eqeq1 2203 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 = ⦋𝑧 / 𝑥⦌𝐵 ↔ 𝐵 = ⦋𝑧 / 𝑥⦌𝐵)) | |
| 10 | 9 | rexbidv 2498 | . . . 4 ⊢ (𝑦 = 𝐵 → (∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵 ↔ ∃𝑧 ∈ 𝐴 𝐵 = ⦋𝑧 / 𝑥⦌𝐵)) | 
| 11 | 8, 10 | elab 2908 | . . 3 ⊢ (𝐵 ∈ {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵} ↔ ∃𝑧 ∈ 𝐴 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) | 
| 12 | 7, 11 | sylibr 134 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵}) | 
| 13 | nfv 1542 | . . . 4 ⊢ Ⅎ𝑧 𝑦 = 𝐵 | |
| 14 | nfcsb1v 3117 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐵 | |
| 15 | 14 | nfeq2 2351 | . . . 4 ⊢ Ⅎ𝑥 𝑦 = ⦋𝑧 / 𝑥⦌𝐵 | 
| 16 | 2 | eqeq2d 2208 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑦 = 𝐵 ↔ 𝑦 = ⦋𝑧 / 𝑥⦌𝐵)) | 
| 17 | 13, 15, 16 | cbvrex 2726 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵) | 
| 18 | 17 | abbii 2312 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 = ⦋𝑧 / 𝑥⦌𝐵} | 
| 19 | 12, 18 | eleqtrrdi 2290 | 1 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ⊤wtru 1365 ∈ wcel 2167 {cab 2182 ∃wrex 2476 Vcvv 2763 ⦋csb 3084 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 | 
| This theorem is referenced by: eusvobj2 5908 | 
| Copyright terms: Public domain | W3C validator |