| Step | Hyp | Ref
 | Expression | 
| 1 |   | eqeq1 2203 | 
. . 3
⊢ (𝑦 = 𝐴 → (𝑦 = ∅ ↔ 𝐴 = ∅)) | 
| 2 |   | eqeq1 2203 | 
. . . 4
⊢ (𝑦 = 𝐴 → (𝑦 = suc 𝑥 ↔ 𝐴 = suc 𝑥)) | 
| 3 | 2 | rexeqbi1dv 2706 | 
. . 3
⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ 𝑦 𝑦 = suc 𝑥 ↔ ∃𝑥 ∈ 𝐴 𝐴 = suc 𝑥)) | 
| 4 | 1, 3 | orbi12d 794 | 
. 2
⊢ (𝑦 = 𝐴 → ((𝑦 = ∅ ∨ ∃𝑥 ∈ 𝑦 𝑦 = suc 𝑥) ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ 𝐴 𝐴 = suc 𝑥))) | 
| 5 |   | tru 1368 | 
. . 3
⊢
⊤ | 
| 6 |   | trud 1380 | 
. . . 4
⊢ (⊤
→ ⊤) | 
| 7 | 6 | rgenw 2552 | 
. . 3
⊢
∀𝑧 ∈
ω (⊤ → ⊤) | 
| 8 |   | bdeq0 15513 | 
. . . . 5
⊢
BOUNDED 𝑦 = ∅ | 
| 9 |   | bdeqsuc 15527 | 
. . . . . 6
⊢
BOUNDED 𝑦 = suc 𝑥 | 
| 10 | 9 | ax-bdex 15465 | 
. . . . 5
⊢
BOUNDED ∃𝑥 ∈ 𝑦 𝑦 = suc 𝑥 | 
| 11 | 8, 10 | ax-bdor 15462 | 
. . . 4
⊢
BOUNDED (𝑦 = ∅ ∨ ∃𝑥 ∈ 𝑦 𝑦 = suc 𝑥) | 
| 12 |   | nfv 1542 | 
. . . 4
⊢
Ⅎ𝑦⊤ | 
| 13 |   | orc 713 | 
. . . . 5
⊢ (𝑦 = ∅ → (𝑦 = ∅ ∨ ∃𝑥 ∈ 𝑦 𝑦 = suc 𝑥)) | 
| 14 | 13 | a1d 22 | 
. . . 4
⊢ (𝑦 = ∅ → (⊤
→ (𝑦 = ∅ ∨
∃𝑥 ∈ 𝑦 𝑦 = suc 𝑥))) | 
| 15 |   | trud 1380 | 
. . . . 5
⊢ (¬
(𝑦 = 𝑧 → ¬ (𝑦 = ∅ ∨ ∃𝑥 ∈ 𝑦 𝑦 = suc 𝑥)) → ⊤) | 
| 16 | 15 | expi 639 | 
. . . 4
⊢ (𝑦 = 𝑧 → ((𝑦 = ∅ ∨ ∃𝑥 ∈ 𝑦 𝑦 = suc 𝑥) → ⊤)) | 
| 17 |   | vex 2766 | 
. . . . . . . . 9
⊢ 𝑧 ∈ V | 
| 18 | 17 | sucid 4452 | 
. . . . . . . 8
⊢ 𝑧 ∈ suc 𝑧 | 
| 19 |   | eleq2 2260 | 
. . . . . . . 8
⊢ (𝑦 = suc 𝑧 → (𝑧 ∈ 𝑦 ↔ 𝑧 ∈ suc 𝑧)) | 
| 20 | 18, 19 | mpbiri 168 | 
. . . . . . 7
⊢ (𝑦 = suc 𝑧 → 𝑧 ∈ 𝑦) | 
| 21 |   | suceq 4437 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧) | 
| 22 | 21 | eqeq2d 2208 | 
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑦 = suc 𝑥 ↔ 𝑦 = suc 𝑧)) | 
| 23 | 22 | rspcev 2868 | 
. . . . . . 7
⊢ ((𝑧 ∈ 𝑦 ∧ 𝑦 = suc 𝑧) → ∃𝑥 ∈ 𝑦 𝑦 = suc 𝑥) | 
| 24 | 20, 23 | mpancom 422 | 
. . . . . 6
⊢ (𝑦 = suc 𝑧 → ∃𝑥 ∈ 𝑦 𝑦 = suc 𝑥) | 
| 25 | 24 | olcd 735 | 
. . . . 5
⊢ (𝑦 = suc 𝑧 → (𝑦 = ∅ ∨ ∃𝑥 ∈ 𝑦 𝑦 = suc 𝑥)) | 
| 26 | 25 | a1d 22 | 
. . . 4
⊢ (𝑦 = suc 𝑧 → (⊤ → (𝑦 = ∅ ∨ ∃𝑥 ∈ 𝑦 𝑦 = suc 𝑥))) | 
| 27 | 11, 12, 12, 12, 14, 16, 26 | bj-bdfindis 15593 | 
. . 3
⊢
((⊤ ∧ ∀𝑧 ∈ ω (⊤ → ⊤))
→ ∀𝑦 ∈
ω (𝑦 = ∅ ∨
∃𝑥 ∈ 𝑦 𝑦 = suc 𝑥)) | 
| 28 | 5, 7, 27 | mp2an 426 | 
. 2
⊢
∀𝑦 ∈
ω (𝑦 = ∅ ∨
∃𝑥 ∈ 𝑦 𝑦 = suc 𝑥) | 
| 29 | 4, 28 | vtoclri 2839 | 
1
⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ 𝐴 𝐴 = suc 𝑥)) |