Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nn0suc0 GIF version

Theorem bj-nn0suc0 13832
Description: Constructive proof of a variant of nn0suc 4581. For a constructive proof of nn0suc 4581, see bj-nn0suc 13846. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nn0suc0 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥𝐴 𝐴 = suc 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-nn0suc0
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2172 . . 3 (𝑦 = 𝐴 → (𝑦 = ∅ ↔ 𝐴 = ∅))
2 eqeq1 2172 . . . 4 (𝑦 = 𝐴 → (𝑦 = suc 𝑥𝐴 = suc 𝑥))
32rexeqbi1dv 2670 . . 3 (𝑦 = 𝐴 → (∃𝑥𝑦 𝑦 = suc 𝑥 ↔ ∃𝑥𝐴 𝐴 = suc 𝑥))
41, 3orbi12d 783 . 2 (𝑦 = 𝐴 → ((𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥) ↔ (𝐴 = ∅ ∨ ∃𝑥𝐴 𝐴 = suc 𝑥)))
5 tru 1347 . . 3
6 a1tru 1359 . . . 4 (⊤ → ⊤)
76rgenw 2521 . . 3 𝑧 ∈ ω (⊤ → ⊤)
8 bdeq0 13749 . . . . 5 BOUNDED 𝑦 = ∅
9 bdeqsuc 13763 . . . . . 6 BOUNDED 𝑦 = suc 𝑥
109ax-bdex 13701 . . . . 5 BOUNDED𝑥𝑦 𝑦 = suc 𝑥
118, 10ax-bdor 13698 . . . 4 BOUNDED (𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥)
12 nfv 1516 . . . 4 𝑦
13 orc 702 . . . . 5 (𝑦 = ∅ → (𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥))
1413a1d 22 . . . 4 (𝑦 = ∅ → (⊤ → (𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥)))
15 a1tru 1359 . . . . 5 (¬ (𝑦 = 𝑧 → ¬ (𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥)) → ⊤)
1615expi 628 . . . 4 (𝑦 = 𝑧 → ((𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥) → ⊤))
17 vex 2729 . . . . . . . . 9 𝑧 ∈ V
1817sucid 4395 . . . . . . . 8 𝑧 ∈ suc 𝑧
19 eleq2 2230 . . . . . . . 8 (𝑦 = suc 𝑧 → (𝑧𝑦𝑧 ∈ suc 𝑧))
2018, 19mpbiri 167 . . . . . . 7 (𝑦 = suc 𝑧𝑧𝑦)
21 suceq 4380 . . . . . . . . 9 (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧)
2221eqeq2d 2177 . . . . . . . 8 (𝑥 = 𝑧 → (𝑦 = suc 𝑥𝑦 = suc 𝑧))
2322rspcev 2830 . . . . . . 7 ((𝑧𝑦𝑦 = suc 𝑧) → ∃𝑥𝑦 𝑦 = suc 𝑥)
2420, 23mpancom 419 . . . . . 6 (𝑦 = suc 𝑧 → ∃𝑥𝑦 𝑦 = suc 𝑥)
2524olcd 724 . . . . 5 (𝑦 = suc 𝑧 → (𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥))
2625a1d 22 . . . 4 (𝑦 = suc 𝑧 → (⊤ → (𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥)))
2711, 12, 12, 12, 14, 16, 26bj-bdfindis 13829 . . 3 ((⊤ ∧ ∀𝑧 ∈ ω (⊤ → ⊤)) → ∀𝑦 ∈ ω (𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥))
285, 7, 27mp2an 423 . 2 𝑦 ∈ ω (𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥)
294, 28vtoclri 2801 1 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥𝐴 𝐴 = suc 𝑥))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 698   = wceq 1343  wtru 1344  wcel 2136  wral 2444  wrex 2445  c0 3409  suc csuc 4343  ωcom 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-nul 4108  ax-pr 4187  ax-un 4411  ax-bd0 13695  ax-bdim 13696  ax-bdan 13697  ax-bdor 13698  ax-bdn 13699  ax-bdal 13700  ax-bdex 13701  ax-bdeq 13702  ax-bdel 13703  ax-bdsb 13704  ax-bdsep 13766  ax-infvn 13823
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-suc 4349  df-iom 4568  df-bdc 13723  df-bj-ind 13809
This theorem is referenced by:  bj-nn0suc  13846
  Copyright terms: Public domain W3C validator