Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nn0suc0 GIF version

Theorem bj-nn0suc0 13471
Description: Constructive proof of a variant of nn0suc 4557. For a constructive proof of nn0suc 4557, see bj-nn0suc 13485. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nn0suc0 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥𝐴 𝐴 = suc 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-nn0suc0
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2161 . . 3 (𝑦 = 𝐴 → (𝑦 = ∅ ↔ 𝐴 = ∅))
2 eqeq1 2161 . . . 4 (𝑦 = 𝐴 → (𝑦 = suc 𝑥𝐴 = suc 𝑥))
32rexeqbi1dv 2658 . . 3 (𝑦 = 𝐴 → (∃𝑥𝑦 𝑦 = suc 𝑥 ↔ ∃𝑥𝐴 𝐴 = suc 𝑥))
41, 3orbi12d 783 . 2 (𝑦 = 𝐴 → ((𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥) ↔ (𝐴 = ∅ ∨ ∃𝑥𝐴 𝐴 = suc 𝑥)))
5 tru 1336 . . 3
6 a1tru 1348 . . . 4 (⊤ → ⊤)
76rgenw 2509 . . 3 𝑧 ∈ ω (⊤ → ⊤)
8 bdeq0 13388 . . . . 5 BOUNDED 𝑦 = ∅
9 bdeqsuc 13402 . . . . . 6 BOUNDED 𝑦 = suc 𝑥
109ax-bdex 13340 . . . . 5 BOUNDED𝑥𝑦 𝑦 = suc 𝑥
118, 10ax-bdor 13337 . . . 4 BOUNDED (𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥)
12 nfv 1505 . . . 4 𝑦
13 orc 702 . . . . 5 (𝑦 = ∅ → (𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥))
1413a1d 22 . . . 4 (𝑦 = ∅ → (⊤ → (𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥)))
15 a1tru 1348 . . . . 5 (¬ (𝑦 = 𝑧 → ¬ (𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥)) → ⊤)
1615expi 628 . . . 4 (𝑦 = 𝑧 → ((𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥) → ⊤))
17 vex 2712 . . . . . . . . 9 𝑧 ∈ V
1817sucid 4372 . . . . . . . 8 𝑧 ∈ suc 𝑧
19 eleq2 2218 . . . . . . . 8 (𝑦 = suc 𝑧 → (𝑧𝑦𝑧 ∈ suc 𝑧))
2018, 19mpbiri 167 . . . . . . 7 (𝑦 = suc 𝑧𝑧𝑦)
21 suceq 4357 . . . . . . . . 9 (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧)
2221eqeq2d 2166 . . . . . . . 8 (𝑥 = 𝑧 → (𝑦 = suc 𝑥𝑦 = suc 𝑧))
2322rspcev 2813 . . . . . . 7 ((𝑧𝑦𝑦 = suc 𝑧) → ∃𝑥𝑦 𝑦 = suc 𝑥)
2420, 23mpancom 419 . . . . . 6 (𝑦 = suc 𝑧 → ∃𝑥𝑦 𝑦 = suc 𝑥)
2524olcd 724 . . . . 5 (𝑦 = suc 𝑧 → (𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥))
2625a1d 22 . . . 4 (𝑦 = suc 𝑧 → (⊤ → (𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥)))
2711, 12, 12, 12, 14, 16, 26bj-bdfindis 13468 . . 3 ((⊤ ∧ ∀𝑧 ∈ ω (⊤ → ⊤)) → ∀𝑦 ∈ ω (𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥))
285, 7, 27mp2an 423 . 2 𝑦 ∈ ω (𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥)
294, 28vtoclri 2784 1 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥𝐴 𝐴 = suc 𝑥))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 698   = wceq 1332  wtru 1333  wcel 2125  wral 2432  wrex 2433  c0 3390  suc csuc 4320  ωcom 4543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-nul 4086  ax-pr 4164  ax-un 4388  ax-bd0 13334  ax-bdim 13335  ax-bdan 13336  ax-bdor 13337  ax-bdn 13338  ax-bdal 13339  ax-bdex 13340  ax-bdeq 13341  ax-bdel 13342  ax-bdsb 13343  ax-bdsep 13405  ax-infvn 13462
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-rab 2441  df-v 2711  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-sn 3562  df-pr 3563  df-uni 3769  df-int 3804  df-suc 4326  df-iom 4544  df-bdc 13362  df-bj-ind 13448
This theorem is referenced by:  bj-nn0suc  13485
  Copyright terms: Public domain W3C validator