Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nn0suc0 GIF version

Theorem bj-nn0suc0 13148
Description: Constructive proof of a variant of nn0suc 4518. For a constructive proof of nn0suc 4518, see bj-nn0suc 13162. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nn0suc0 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥𝐴 𝐴 = suc 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-nn0suc0
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2146 . . 3 (𝑦 = 𝐴 → (𝑦 = ∅ ↔ 𝐴 = ∅))
2 eqeq1 2146 . . . 4 (𝑦 = 𝐴 → (𝑦 = suc 𝑥𝐴 = suc 𝑥))
32rexeqbi1dv 2635 . . 3 (𝑦 = 𝐴 → (∃𝑥𝑦 𝑦 = suc 𝑥 ↔ ∃𝑥𝐴 𝐴 = suc 𝑥))
41, 3orbi12d 782 . 2 (𝑦 = 𝐴 → ((𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥) ↔ (𝐴 = ∅ ∨ ∃𝑥𝐴 𝐴 = suc 𝑥)))
5 tru 1335 . . 3
6 a1tru 1347 . . . 4 (⊤ → ⊤)
76rgenw 2487 . . 3 𝑧 ∈ ω (⊤ → ⊤)
8 bdeq0 13065 . . . . 5 BOUNDED 𝑦 = ∅
9 bdeqsuc 13079 . . . . . 6 BOUNDED 𝑦 = suc 𝑥
109ax-bdex 13017 . . . . 5 BOUNDED𝑥𝑦 𝑦 = suc 𝑥
118, 10ax-bdor 13014 . . . 4 BOUNDED (𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥)
12 nfv 1508 . . . 4 𝑦
13 orc 701 . . . . 5 (𝑦 = ∅ → (𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥))
1413a1d 22 . . . 4 (𝑦 = ∅ → (⊤ → (𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥)))
15 a1tru 1347 . . . . 5 (¬ (𝑦 = 𝑧 → ¬ (𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥)) → ⊤)
1615expi 627 . . . 4 (𝑦 = 𝑧 → ((𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥) → ⊤))
17 vex 2689 . . . . . . . . 9 𝑧 ∈ V
1817sucid 4339 . . . . . . . 8 𝑧 ∈ suc 𝑧
19 eleq2 2203 . . . . . . . 8 (𝑦 = suc 𝑧 → (𝑧𝑦𝑧 ∈ suc 𝑧))
2018, 19mpbiri 167 . . . . . . 7 (𝑦 = suc 𝑧𝑧𝑦)
21 suceq 4324 . . . . . . . . 9 (𝑥 = 𝑧 → suc 𝑥 = suc 𝑧)
2221eqeq2d 2151 . . . . . . . 8 (𝑥 = 𝑧 → (𝑦 = suc 𝑥𝑦 = suc 𝑧))
2322rspcev 2789 . . . . . . 7 ((𝑧𝑦𝑦 = suc 𝑧) → ∃𝑥𝑦 𝑦 = suc 𝑥)
2420, 23mpancom 418 . . . . . 6 (𝑦 = suc 𝑧 → ∃𝑥𝑦 𝑦 = suc 𝑥)
2524olcd 723 . . . . 5 (𝑦 = suc 𝑧 → (𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥))
2625a1d 22 . . . 4 (𝑦 = suc 𝑧 → (⊤ → (𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥)))
2711, 12, 12, 12, 14, 16, 26bj-bdfindis 13145 . . 3 ((⊤ ∧ ∀𝑧 ∈ ω (⊤ → ⊤)) → ∀𝑦 ∈ ω (𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥))
285, 7, 27mp2an 422 . 2 𝑦 ∈ ω (𝑦 = ∅ ∨ ∃𝑥𝑦 𝑦 = suc 𝑥)
294, 28vtoclri 2761 1 (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥𝐴 𝐴 = suc 𝑥))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 697   = wceq 1331  wtru 1332  wcel 1480  wral 2416  wrex 2417  c0 3363  suc csuc 4287  ωcom 4504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-nul 4054  ax-pr 4131  ax-un 4355  ax-bd0 13011  ax-bdim 13012  ax-bdan 13013  ax-bdor 13014  ax-bdn 13015  ax-bdal 13016  ax-bdex 13017  ax-bdeq 13018  ax-bdel 13019  ax-bdsb 13020  ax-bdsep 13082  ax-infvn 13139
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-sn 3533  df-pr 3534  df-uni 3737  df-int 3772  df-suc 4293  df-iom 4505  df-bdc 13039  df-bj-ind 13125
This theorem is referenced by:  bj-nn0suc  13162
  Copyright terms: Public domain W3C validator